Towards Adaptive, Resilient and Self-Organizing
Peer-to-Peer Systems

Alberto Montresor Hein Meling Ozalp Babaoglu

Technical Report UBLCS-2002-09
September 2002

Department of Computer Science
University of Bologna

Mura Anteo Zamboni 7
40127 Bologna (Italy)

The University of Bologna Department of Computer Science Research Technical Reports are available in
gzipped PostScript format via anonymous FIP from the areaf t p. cs. uni bo. i t:/pub/ TR/ UBLCSor via
WWW at URL htt p: // www. cs. uni bo. i t/. Plain-text abstracts organized by year are available in the
directory ABSTRACTS. All local authors can be reached via e-mail at the address last-name@s. uni bo. i t.
Questions and comments should be addressed tot r - admi n@s. uni bo. it.

Recent Titles from the UBLCS Technical Report Series

2001-2 Formalization, Analysis and Prototyping of Mobile Code Systems (Ph.D. Thesis), Mascolo, C., Janaury
2001.

2001-3 Nature-Inspired Search Techniques for Combinatorial Optimization Problems (Ph.D. Thesis), Rossi, C.,
Janaury 2001.

2001-4 Desktop 3d Interfaces for Internet Users: Efficiency and Usability Issues (Ph.D. Thesis), Pittarello, E., Jan-
uary 2001.

2001-5 An Expert System for the Evaluation of EDSS in Multiple Sclerosis, Gaspari, M., Roveda, G., Scandellari,
C., Stecchi, S., February 2001.

2001-6 Probabilistic Information Flow in a Process Algebra, Aldini, A., April 2001 (Revised September 2001).

2001-7 Architecting Software Systems with Process Algebras, Bernardo, M., Ciancarini, P., Donatiello, L., July
2001.

2001-8 Non-determinism in Probabilistic Timed Systems with General Distributions, Aldini, A., Bravetti, M., July
2001.

2001-9 Anthill: A Framework for the Development of Agent-Based Peer-to-Peer Systems, Babaoglu, O., Meling,
H., Montresor, A., November 2001 (Revised September 2002).

2002-1 A Timed Join Calculus, Biinzli, D. C., Laneve, C., February 2002.

2002-2 A Process Algebraic Approach for the Analysis of Probabilistic Non-interference, Aldini, A., Bravetti, M.,
Gorrieri, R., March 2002.

2002-3 Quality of Service and Resources’ Optimization in Wireless Networks with Mobile Hosts (Ph.D Thesis),
Bononi, L., March 2002.

2002-4 Specification and Analysis of Stochastic Real-Time Systems (Ph.D. Thesis), Bravetti, M., March 2002.
2002-5 QoS-Adaptive Middleware Services (Ph.D. Thesis), Ghini, V., March 2002.

2002-6 Towards a Semantic Web for Formal Mathematics (Ph.D. Thesis), Schena, 1., March 2002.

2002-7 Reuvisiting Interactive Markov Chains, Bravetti, M., June 2002.

2002-8 User Untraceability in the Next-Generation Internet: a Proposal, Tortonesi, M., Davoli, R., August 2002.

2002-9 Towards Adaptive, Resilient and Self-Organizing Peer-to-Peer Systems, Montresor, A., Meling, H.,
Babaoglu, O., September 2002.

2002-10 Towards Self-Organizing, Self-Repairing and Resilient Large-Scale Distributed Systems, Montresor, A.,
Babaoglu, O., Meling, H., September 2002.

2002-11 Messor: Load-Balancing through a Swarm of Autonomous Agents, Montresor, A., Meling, H., Babaoglu,
O., September 2002.

Towards Adaptive, Resilient and Self-Organizing
Peer-to-Peer Systems

Alberto Montresor ! Hein Meling 2 Ozalp Babaoglu '

Technical Report UBLCS-2002-09

September 2002

Abstract

Peer-to-peer (P2P) systems are characterized by decentralized control, large scale and extreme dy-
namism of their operating environment. Developing applications that can cope with these characteristics
requires a paradigm shift, placing adaptation, resilience and self-organization as primary concerns. In this
note, we argue that complex adaptive systems (CAS), which have been used to explain certain biological,
social and economical phenomena, can be the basis of a programming paradigm for P2P applications. In
order to pursue this idea, we are developing Anthill, a framework to support the design, implementation
and evaluation of P2P applications based on ideas such as multi-agent and evolutionary programming
borrowed from CAS.

1. Department of Computer Science, University of Bologna, Mura Anteo Zamboni 7, 40127 Bologna (Italy), Email:
{montresor,babaoglu}@CS.UniBO.IT

2. Department of Telematics, Norwegian University of Science and Technology, O.S. Bragstadsplass 2A, N-7491 Trond-
heim (Norway), Email: meling@item.ntnu.no

1 Introduction

1 Introduction

Informally, peer-to-peer systems are distributed systems where all nodes are peers in the sense
that they have equal role and responsibility. In fact, distributed computing was intended to be
synonymous with peer-to-peer computing long before the term was invented, but this initial
desire was subverted by the advent of client-server computing popularized by the World Wide
Web.

The modern use of the term peer-to-peer (P2P) and distributed computing as intended by
its pioneers, however, differ in several important aspects. First, P2P applications reach out to
harness the outer edges of the Internet and consequently involve scales that were previously
unimaginable. Second, P2P by definition, excludes any form of centralized structure, requiring
control to be completely decentralized. Finally, and most importantly, the environments in which
P2P applications are deployed exhibit extreme dynamism in structure, content and load. The
topology of the system typically changes rapidly due to nodes voluntarily coming and going or
due to involuntary events such as crashes and partitions. The load in the system may also shift
rapidly from one region to another, for example, as certain files become “hot” in a file sharing
system,; or the computing needs of a node suddenly increase in a grid computing system.

2 Contribution

In order to deal with the scale and dynamism that characterize P2P systems, a paradigm shift is
required that includes self-organization, adaptation and resilience as intrinsic properties rather
than as afterthought. In this note, we suggest that complex adaptive systems (CAS) commonly used
to explain the behavior of certain biological and social systems can be the basis of a programming
paradigm for P2P applications. In the CAS framework, a system consists of a large number of
relatively simple autonomous computing units, or agents. CAS typically exhibit what is called
emergent behavior: the behavior of the agents, taken individually, may be easily understood, while
the behavior of the system as a whole defies simple explanation. In other words, the interactions
among agents, in spite of their simplicity, can give rise to richer and more complex patterns than
those generated by single agents viewed in isolation.

As an instance of CAS drawn from nature, consider an ant colony. Several species of ants are
known to group objects in their environment (e.g., dead corpses) into piles so as to clean up their
nests. Observing this behavior, one could be mislead into thinking that the cleanup operation is
being coordinated by some “leader” ants. Resnick [7] describes an artificial ant colony exhibiting
this very same behavior in a simulated environment. Resnick’s artificial ant follows three simple
rules: (i) wander around randomly, until it encounters an object; (ii) if it was carrying an object, it
drops the object and continues to wander randomly; (iii) if it was not carrying an object, it picks
the object up and continues to wander. Despite their simplicity, a colony of these “unintelligent”
ants is able to group objects into large clusters, independent of their initial distribution.

What renders CAS particularly attractive from a P2P perspective is the fact that global prop-
erties like adaptation, self-organization and resilience are achieved without explicitly embedding
them into the individual agents. In the above example, there are no rules specific to initial con-
ditions, unforeseen scenarios, variations in the environment or presence of failures. Yet, given
large enough colonies, the global behavior is surprisingly adaptive and resilient.

In order to pursue these ideas, we are developing Anthill, a novel framework for P2P applica-
tion development, based on ideas such as multi-agent systems and evolutionary programming
borrowed from CAS [9, 4]. The goals of Anthill are to provide an environment that simplifies the
design and deployment of P2P systems based on these paradigms, and to provide a “testbed” for
studying and experimenting with CAS-based P2P systems in order to understand their proper-
ties and evaluate their performance.

In the next sections, we provide an overview of Anthill and we present the first results ob-
tained through it, by presenting a load-balancing algorithm called Messor. Messor is a simple
variant of the above artificial ant algorithm: ants drop an object they may be carrying only after
having wandered about randomly “for a while” without encountering other objects. Colonies

UBLCS-2002-09 2

3 Anthill

of such ants try to disperse objects (in the case of Messor, computing tasks) uniformly over their
environment rather than clustering them. As such, they form the basis for a completely decen-
tralized load balancing algorithm.

3 Anthill

Anthill uses terminology derived from the ant colony metaphor. An Anthill distributed system is
composed of a self-organizing overlay network of interconnected nests. Each nest is a peer entity
sharing its computational and storage resources. The network is characterized by the absence
of a fixed structure, as nests come and go and discover each other on top of a communication
substrate. nests handle requests originated by local users, by generating one or more ants — au-
tonomous agents that travel across the nest network trying to satisfy the request. Ants commu-
nicate indirectly by reading or modifying their environment, through information stored in the
visited nests. For example, an ant-based implementation of a distributed lookup service could
leave routing information to guide subsequent ants towards a region of the network where the
searched key is more likely to be found.

The aim of Anthill is to simplify P2P application development and deployment by freeing
the programmer of all low-level details including communication, security and ant scheduling.
Developers wishing to experiment with new protocols need to focus on designing appropriate
ant algorithms using the Anthill API and defining the structure of the P2P system. When writ-
ing their protocols, developers may exploit a set of library components and services provided
by nests. Examples of such services include failure detection, document downloading and ant
scheduling for distributed computing applications.

A Java prototype of the Anthill runtime environment has been developed. The runtime envi-
ronment is based on JXTA [2], an open-source P2P project promoted by Sun Microsystems. JXTA
is aimed at establishing a network programming platform for P2P systems by identifying a small
set of basic facilities necessary to support P2P applications and providing them as building blocks
for higher-level services. The benefits of basing our implementation on JXTA are several. For ex-
ample, JXTA allows the use of different transport layers for communication, including TCP/IP
and HTTP, and deals with issues related to firewalls and NAT.

In addition to the runtime environment, Anthill includes a simulation environment to help
developers analyze and evaluate the behavior of P2P systems. All simulation parameters, such
as the structure of the network, the ant algorithms to be deployed, characteristics of the work-
load presented to the system, and properties to be measured, are specified using XML. Unlike
other toolkits for multi-agent simulation [3], Anthill uses a single ant implementation in both
the simulation and actual run-time environments, thus avoiding the cost of re-implementing ant
algorithms before deploying them. This important feature has been achieved by a careful de-
sign of the Anthill API and by providing two distinct implementations of it for simulation and
deployment.

In Anthill, we further exploit the “nature” metaphor through the use of evolutionary tech-
niques for improving various characteristics of a P2P system. In particular, we make use of ge-
netic algorithms [4] in tuning the ant algorithms used by the P2P system, by specifying optimiza-
tion criteria and constraints for the parameters of the operating environment and ant algorithms.

4 Messor

The aim of Messor is to support highly parallel computations, such as the one performed by the
Seti@Home project, in which the workload may be subdivided in a large number of independent
tasks. Unlike Seti@Home, however, Messor is not based on the master-slave paradigm, in which
a well-known centralized master is responsible for supplying slave machines with computing
tasks. In Messor, every node of the network is enabled to produce new tasks and introduce them
in the network for computation. A swarm of Messor ants is responsible for exploring the network
and balancing the workload by dispersing the tasks among all reachable nodes. Once computed,

UBLCS-2002-09 3

5 Conclusions and Future Work

Load

100000

10000
1000 4
100 -

10 4

1

0]

1

Nests

100

Load

100000
10000
1000
100

10

1

1

Nests

(i)

100

Load

100000

10000
1000

100

Figure 1. Load distribution after (i) 0, (ii) 20, (iii) 40 iterations in the simulation.

task results are sent back to the originator node, that may use appropriate mechanisms based on
lease techniques to keep track of task assignments, in order to re-insert tasks that have been lost
because they were assigned to crashed or partitioned nodes.

The Messor algorithm is a variation of the artificial ant algorithm illustrated in Section 2.
Each ant can assume three different states: SearchMax, SearchMin and Transfer. While in the
SearchMax state, the ant wanders across the network, looking for overloaded nodes. When a
sufficient number of nodes has been visited, the ant switch to SearchMin state, during which
the ant wanders across the network looking for underloaded nodes. Again, after a sufficient
number of steps, the ant switch to the Transfer state, during which it transfers tasks from the
most overloaded node to the most underloaded one, selected among those visited during the
SearchMax and SearchMin phases. When the transfer state is completed, the ants switch to
SearchMax and the process repeats itself.

The SearchMax and SearchMin walks are not performed completely at random. When wan-
dering, ants collect information about the load of the last visited nodes. This information is stored
in the nodes themselves and is used by ants to drive the SearchMax and SearchMin phases: at
each step, the ant randomly selects the next node to visit among those that are believed to be
more overloaded (in SearchMax) or underloaded (in SearchMin). In this way, ants move faster
towards those regions of the network in which they are more interested.

The Messor algorithm is characterized by several parameters that may be tuned to improve
the performance of the algorithm. Examples of parameters include the “keep-searching-probability”,
i.e. the probability (computed at each step) that an ant remains in its current search state instead
of switching to the next one; the “exploration probability”, i.e. the probability that an ant selects
the next node with a uniform distribution, instead of moving towards overloaded or underloaded
nodes, in order to visit unexplored regions of the network. We are currently exploring how these
nodes

Figure 1 shows some preliminary results obtained by Messor. More details about the algo-
rithm and its performance can be found in a companion paper [5]. These results were obtained in
a network of 100 idle nodes, by generating 100,000 tasks from a single node. At each iteration, all
ants perform a single step by executing their algorithm and moving to the next node. As shown
in the figure, after only 40 iterations, the workload is evenly balanced among all nodes.

5 Conclusions and Future Work

We have argued that ideas and techniques borrowed from CAS could form the basis for a new
paradigm for building P2P systems that are adaptive, resilient and self-organizing. The approach
we are advocating is quite different from those adopted in recent P2P routing algorithms [8, 10, 6]
where complex protocols are required to reconfigure the routing tables in the event of nodes
joining or leaving (voluntarily or due to crashes) the system. The adaptiveness and resilience of
Anthill applications may be traced back to several sources. First, complex systems are composed
of large number of entities, each of them interchangeable for another. Moreover, interconnections
between entities are flexible, allowing transfer of tasks between entities, and communication

UBLCS-2002-09 4

REFERENCES

throughout the system. Finally, the differences between entities enables a diversity of responses
in a changing environment.

Algorithms developed in Anthill are often based on a probabilistic approach, and thus it is
difficult to provide guarantees on their behavior. Nevertheless, our preliminary results are in-
deed interesting; using Anthill, we have implemented the load-balancing application briefly in-
troduced in this paper, and we have realized a file sharing application called Gnutant, that again
is inspired to the behavior of ants [1]. Gnutant ants builds a distributed index consisting of URLs
to documents, by traversing the network looking for documents and leaving information trails
to be followed in future searches.

References

[1] O. Babaoglu, H. Meling, and A. Montresor. Anthill: A Framework for the Development of
Agent-Based Peer-to-Peer Systems. In Proc. of the 22th Int. Conf. on Distributed Computing
Systems, Vienna, Austria, July 2002.

[2] Project JXTA. http://www.jxta.org.

[3] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The Swarm Simulation System,
A Toolkit for Building Multi-Agent Simulations. Technical report, Swarm Development
Group, June 1996. http:// www.swarm.org.

[4] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Apr. 1998.

[5] A. Montresor, H. Meling, and O. Babaoglu. Messor: Load-Balancing through a Swarm of
Autonomous Agents. Technical Report UBLCS-02-08, Dept. of Computer Science, Univer-
sity of Bologna, May 2002. In preparation.

[6] S. Ratnasamy et al. A Scalable Content-Addressable Network. In Proc. of the ACM SIG-
COMM'01, San Diego, CA, 2001.

[7] M. Resnick. Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds.
MIT Press, 1994.

[8] A.Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object Location and Routing
for Large-Scale Peer-to-Peer Systems. In Proc. of the 18th International Conference on Distributed
Systems Platforms, Heidelberg, Germany, Nov. 2001.

[9] G. Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT
Press, 1999.

[10] B.Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry: An Infrastructure for Fault-Tolerant
Wide-Area Location and Routing. Technical Report UCB/CSD-01-1141, U.C. Berkeley, Apr.
2001.

UBLCS-2002-09 5

