
Anthill: a Framework for the Design and the Analysis of
Peer-to-Peer Systems�

Alberto Montresor

Department of Computer Science, University of Bologna
via Mura Anteo Zamboni 7, I-40127 Bologna (Italy)

Email: montresor@cs.unibo.it

Abstract

The peer-to-peer (P2P) paradigm for building dis-
tributed applications has recently gained attention
from both industry and the media, following the
enormous success of P2P systems like Napster,
Gnutella and Freenet. The multitude of P2P projects
appeared recently must confront common problems
including security, reliability and routing. Unfortu-
nately, traditional techniques for dealing with these
issues are not completely adequate, given the sub-
stantial increase in the scale of these systems. In
this paper, we introduce a new approach for design-
ing new peer-to-peer applications, based on the bio-
logical model of ant colony networks. Furthermore,
we present Anthill, a framework supporting devel-
opers and researchers in the design and the analysis
of new protocols based on this approach.

1 Introduction
The peer-to-peer (P2P) paradigm for building dis-
tributed applications has recently gained attention
from both industry and the media. Simply stated, in
a P2P network each machine is a peer that can coop-
erate with every other machine in the network, both
providing and consuming services at the same time.
Clearly, this paradigm differs from client-server, in
which few centralized servers satisfy requests from
a large number of clients.

The concept of P2P is not new: for example, the
original Usenet was carried over the peer-to-peer di-
alup UUCPnet. Similarly, in the beginning all nodes
in Internet were peers, which cooperate to route
packets among themselves. With the growth of these
systems, however, the original peer-to-peer design

�Partial support for this work was provided by Sun Microsys-
tems, Inc. through a Collaborative Research Grant and the Italian
Ministry of University, Research and Technology.

has been lost. Currently, the Internet has evolved
into a more hierarchical, client-server structure, in
which a relatively small number of servers pro-
vide facilities like routing, e-mail, web and news-
groups to millions of client machines which sim-
ply act as service consumers. These client machines
are second-class Internet citizens, as they are at the
edges of the network, cut off from the DNS system
because they have no fixed IP address.

The reason for the increasing interest for peer-to-
peer can be attributed to the enormous success ob-
tained by P2P applications like Napster [10], and
more recently by Gnutella [6] and Freenet [3].
These systems enable end-users to establish a file-
sharing network for the exchange of digital docu-
ments including music, movies and software. With
their diffusion, millions of machines normally rele-
gated to a client role started providing services to
their respective communities. The big difference
between existing Internet applications and peer-to-
peer systems is that the latter are capable of exploit-
ing what has been defined the “the dark matter” of
the Internet, i.e. the huge amount of resources avail-
able at the edges of the network [11]. Unfortunately,
most of the exchanged material is copyrighted, and
this has resulted in equating P2P with the subversion
of intellectual property.

Despite its poor popular reputation, P2P is ex-
tremely interesting from a technical point of view.
Its completely decentralized model enables the de-
velopment of many useful applications with reliabil-
ity and high-availability characteristics previously
unseen in Internet. As an example, systems like
Freenet can solve what has been called the “slash-
dot effect”: the more popular a piece of information
is, the less available it becomes [1]. On the contrary,
the number of replicas of a document (and thus its
availability) on Freenet increases proportionally to
its popularity [3]. Furthermore, P2P is not limited

1



to file sharing: several peer-to-peer projects have
appeared in fields like distributed computing (e.g.,
Seti@Home [14] and Distributed.net [4]) and mes-
saging and collaborative tools (e.g., Groove [7]).

The multitude of open-source and commercial P2P
projects must confront common problems including
security, scalability, reliability and routing. Unfor-
tunately, given the novelty of the field, a theoretical
and technical framework capable of supporting ap-
plication development is still missing. This lack has
been recently recognized by Intel, which founded
the Peer-to-Peer Working Group with the aim of
defining new standards for P2P applications [12],
and by Sun Microsystems, which announced the
JXTA initiative to provide basic infrastructure ser-
vices for P2P application development [8].

The Anthill project, currently under development
at the University of Bologna, was born with sim-
ilar considerations. But differently from industry-
proposed initiatives, which are deemed at estab-
lishing new programming and communication stan-
dards for the emerging P2P market, our goal is to
provide a framework supporting researchers in the
design and the analysis of new P2P algorithms.

In order to pursue these goals, we introduce a new
approach for designing P2P systems, based on the
ant colony paradigm [5] — an agent-based tech-
nique that has proven to be a powerful tool for solv-
ing optimization and communication problems in
networks [13, 2]. In ant-based algorithms, artificial
ants of limited individual capabilities move across
a network of peer nodes trying to solve a particular
problem. While moving, they build solutions and
modify the problem representation by adding col-
lected information. This reflects the behavior of real
ants that cooperate through stigmergy, i.e. the ca-
pability to communicate among individuals through
modifications induced in the environment. Real ants
are known to locate the shortest path to a food source
using as only information the trails of chemical sub-
stances called pheromones deposited by other ants.
Although individual ants are unintelligent and have
no explicit problem solving capability, ant colonies
manage to perform several complicated tasks with
high degrees of consistency. In other words, intel-
ligent global behavior emerges through the interac-
tions within colonies of such agents.

The Anthill project builds upon the similarities be-
tween P2P systems and social colonies of ants1. We

1Although ant colonies are generally competing for the con-
trol of the territory, there are ant species in which large networks
of interconnected but autonomous social units cooperate by ex-

believe that this biology-inspired paradigm could
serve as a basis for a new framework supporting the
design of completely decentralized P2P applications
in large scale systems with a highly dynamic envi-
ronment. In the Anthill framework, a P2P system
is composed of a network of interconnected nests.
Each nest is a peer entity capable of performing
computations and store documents, running on the
machine of some user. Nests react to request com-
ing from users by generating ants, which are au-
tonomous agents capable of traveling across the net-
work by moving from one nest to another. While in
a nest, ants are enabled to perform basic operations
like performing computation, query the nest for doc-
uments, inserting new documents in it, and release
information (“pheromone”) about other documents
and nests in order to help other ants to locate docu-
ments.

Anthill takes care of all low-level details such as
communication, security, ant scheduling, etc. Re-
searchers willing to implement new P2P protocols
are simply required to write suitable ant algorithms
using the framework API. In this way, they are free
to concentrate their efforts on the organization of
their P2P systems. Anthill provides also an evalu-
ation framework which helps researchers to analyze
the behavior of their ants and assess them. The eval-
uation is based on the execution of ant algorithms in
simulated nest networks.

The similarities between Anthill and natural systems
has been pushed even further, by enabling the inte-
gration of evolution techniques (i.e., genetic algo-
rithms [9]) in our evaluation framework. In this way,
it is possible to associate to ant algorithms a set of
parameters influencing their behavior. This param-
eters constitutes the “genetic code” of an ant. The
evaluation framework enable the selection of the
fittest genetic codes (i.e., those which better solve
a particular problem) using genetic algorithms.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the main elements of Anthill and
discusses part of its API. Section 3 illustrates how
evolution techniques can be used in Anthill. Sec-
tion 4 describes the current implementation status.
Finally, Section 5 concludes the paper and points out
the directions for future work.

changing ants through the pheromone trails linking the nests.
As an example, one super-colony of Formica Yessensis on the
coast of Japan is reported to have had 1,080,000 queens and
306,000,000 workers in 45,000 interconnected nests.

2



����

��

������������
����

����

��
��

������

����

��������

A

B

C

D E

Doc Storage Doc Storage

Doc Storage

Doc Storage

Doc Storage

Figure 1: A nest network composed of five nests.
Each nest contains a document storage and com-
municate with other nests through a gateway (gray
spots). Some ants (black spots) are managed by
ant managers included in nests, while others travel
through the network possibly carrying documents
with them.

2 The Anthill Framework

In this section, we describe the Anthill framework
by illustrating its basic elements and its API speci-
fication. We have structured the framework in three
main components: the Anthill infrastructure, the ant
algorithms and the evaluation framework.

2.1 The Anthill Infrastructure

The Anthill infrastructure is composed of a network
of nests (see Figure 1 for an example). Nests are P2P
applications run by users on their machines. Each
nest is capable of performing computations and to
store documents on behalf of its user, or on behalf
of foreign ants coming from other nests run by dif-
ferent users. A user may ask its nest for a specific
service by performing requests and listening for re-
sponses. For example, in a music-sharing network a
request could be a query for the songs of a particular
author, and the response may be constituted of a set
of addresses from which these songs can be down-
loaded. Alternatively, the response could contain the
songs themselves.

The nest interface does not impose any particular
format to requests and responses; moreover, it does
not specify which services a nest should provide.
The interpretation and satisfaction of requests are
demanded to ants; in this way, programmers may
develop new P2P services simply by implementing
new ant algorithms based on the facilities offered by

public interface Nest {

NestId getId();

void addDocument(Document doc);

void request(Request request,

ResponseListener listener);

void addNeighbour(NestId aid);

void removeNeighbour(NestId aid);

Neighbour[] getNeighbours();

}

Figure 2: The Nest interface.

the Anthill infrastructure.

Each nest in the Internet is associated with a unique
nest identifier, which is composed of an IP address
and a port number. A nest A that knows the iden-
tifier of another nest B may communicate directly
with it; in this case, we say that the nestB is a neigh-
bor ofA, or that there is a connection betweenA and
B. A collection of nests together with their connec-
tions form a nest network. The set of neighbors of a
nest may be dynamic: additional neighbors may be
added at run-time, thus modifying the shape of the
network, simply by notifying their identifiers to the
nest.

The interface Nest used to interact with nests is
shown in Figure 2. The included methods en-
able to obtain the identifier of the nest, insert new
documents, perform requests and obtain responses
through listener interfaces, and finally add, remove
and obtain information about neighbors.

Nest implementations are composed of three mod-
ules: a document storage, an ant manager and a
gateway. A document storage is responsible for stor-
ing documents; different nest implementations may
adopt different policies for managing the (inherently
limited) space assigned to a storage for performing
its duties. For example, last-recently-used policies
may be used to discard documents rarely accessed.
The ant manager takes care of scheduling computa-
tions of visiting ants. It is responsible for killing ants
that are using too much resources. Finally, a gate-
way is the communication module that is responsi-
ble for sending and receiving ants, and for monitor-
ing reachability of remote nests.

2.2 Ant Algorithms
As mentioned in the introduction, ants are au-
tonomous agents capable of traveling across a nest
network and interact with the nests they visit in or-
der to pursue their goal. Ants must implement the
Ant interface shown in Figure 3. The generic run()
method included in it contains the ant’s algorithm

3



public interface Ant {

void run(AntView view);

}

Figure 3: The Ant interface.

and is invoked by the ant manager described in the
previous section. Apart from the algorithm, ants are
characterized by a small amount of memory contain-
ing the ant’s state. The behavior of an ant is deter-
mined by its algorithm and its current state, possibly
in a stochastic way. For example, an ant may proba-
bilistically decide to not follow what is believed the
best route to a document in order to explore new re-
gions of a network and find shorter paths.

Ants are generated by nests in response to requests;
each ant is aimed at satisfying the request for which
it has been generated. Ants move from nest to nest
until they succeed in their goal (e.g., until they reach
a nest containing the required documents). A suc-
cessful ant returns to the nest that has generated it in
order to deliver a response to the user. When an ant
moves from a nest to another, its state is transmit-
ted from the source nest to the destination, where
the ant is re-created. The ant object at the source
is destroyed. Note that if the ant algorithm is not
known to the destination nest, the algorithm must be
transmitted as well. This is obtained by exploiting
the possibility of remote code download offered by
Java, as explained in the next section.

The run() method of an ant is invoked in every nest
visited during its trip. The ant manager is respon-
sible for confining the ant algorithm in a controlled
environment, where a limited set of actions is possi-
ble. This confinement is obtained through the secu-
rity features of Java, as explained in the next section.
The only methods which may be invoked are those
contained in interface AntView (Figure 4), which en-
able to perform the following operations:

� move to another nest by specifying its identi-
fier;

� query the local document storage looking for a
particular set of documents;

� inform the nest of the existence of other nests
by adding new nest identifiers;

� obtain the list of neighbors known to the local
nest;

� getting and setting the pheromone information
associated to links to other nests;

� insert new documents in the storage;

� notify the nest about a request for which the ant

public interface AntView {

void move(NestId id);

Document[] request(Request request);

void addNeighbour(NestId id);

NestId getNeighbours();

Pheromone getPheromone(NestId id);

void setPheromone(NestId id,

Pheromone pheromone);

void addDocument(Document doc);

void result(Request request,

Result result);

}

Figure 4: The AntView interface.

has been able to produce a response.

Note that in order to insert new documents in the
storage, ants may be required to carry documents
with them when they travel across the network. Fig-
ure 1 shows an example of this behavior: the ant
going from nest B to nest E is carrying a document
with it; the same is doing the ant going from nest E
to nest C.

As for requests and responses, the Anthill frame-
work does not specify any particular format for
pheromone information; we left ant developers free
to design the format they prefer, in relation to
their particular ant implementation. For example,
a Freenet-like ant will calculate the hash keys of the
stored documents and will organize the pheromone
information on the basis of these keys [3].

2.3 The Evaluation Framework

In order to evaluate the “goodness” of new ant al-
gorithms, the Anthill framework includes also an
evaluation framework through which the behavior
of a particular ant implementation may be simu-
lated and assessed. Each simulation is called sce-
nario and it is composed of a collection of inter-
connected nests and a scheduling of requests to be
performed. The simulation proceeds by executing
the various requests and by monitoring several algo-
rithms parameters such as the number of request per-
formed, the number of request satisfied, the number
of ant moves performed, the number of documents
copied from one nest to another, and so on. Sce-
narios are generated randomly on the basis of some
probabilistic distribution. Different scenarios imple-
mentations may use distinct distributions and thus
produce different network organizations. Using the
framework, programmers can evaluate several sce-
narios at once and obtain averaged values for the
collected statistics.

4



3 Using Evolution in Anthill

In Anthill, it is possible to further extend the analogy
between P2P systems and the natural world by us-
ing evolution-based techniques such as genetic algo-
rithms [9]. As mentioned above, the behavior of ants
is determined by their algorithms. These algorithms
may be parameterized in various way; for example,
an ant may deterministically choose to follow the
path presenting the strongest pheromone concentra-
tion, or stochastically select any of the neighbors of
its current nest following some exploration proba-
bility parameter. We believe that genetic algorithms
may help to select the best set of parameters for an
ant algorithm.

We have extended the evaluation framework by in-
serting the concept of chromosome, which repre-
sents a set of parameters for a particular ant algo-
rithm. The evaluation framework maintains a popu-
lation (i.e., a collection) of chromosomes. At each
generation of the genetic algorithm, every chromo-
some in the population is evaluated by using it as
parameter set for the ants used in a scenario. The
fittest chromosomes (i.e., those that produces the
ants which better solve a particular problem) are ma-
nipulated genetically using crossover and mutation
operators to produce the next generation. The other
chromosomes are discarded. This genetic selection
continues until a fixed number of generations are ex-
ecuted, or some fitness objectives are met.

Besides from exploiting genetic techniques for the
off-line selection of the fittest ant parameters, we
plan also to investigate if genetic techniques may
be used during the run-time functioning of nest net-
works; for example, a nest network could select the
fittest ant algorithm by launching ants of distinct
types and with different chromosomes (i.e., set of
parameters) for the same request, and then rating
them using a local fitness evaluation using measures
like the time needed to satisfy a request. Nests may
“steal” the algorithm and the chromosomes of the
ants visiting them and use cross-over and mutation
techniques to generate new ants. It is interesting to
note that this would lead to a distributed computing
peer-to-peer system whose task is to select the fittest
algorithm for other P2P applications.

4 Implementation Status

The Anthill project is still in its early stages. As a
first step, we have defined the set of interfaces rep-
resenting the basic components of the infrastructure,
including nests, document storages, ant managers

and gateways. We have also designed interfaces
for the main elements of the evaluation and genetic
frameworks, including scenarios, chromosomes and
populations. Furthermore, we have written a first
prototype implementation for all these interfaces.

We have designed our framework in order to min-
imize the differences between real networks, com-
posed of a distributed collection of nests commu-
nicating through the Internet, and evaluation net-
works simulated in a single machine. For exam-
ple, the same nest implementation is used in both
cases; what differs are the implementations of gate-
ways and nest identifiers, which are based on TCP in
the former case and on local method invocations in
the latter. Ants are not required to be aware if they
are being deployed in a real or simulated network,
as their interactions are limited to interface AntView.

Apart from the realization of the infrastructure, we
are working also on the development of the first ant
implementations and their testing using the evalua-
tion framework. The first results seem to be encour-
aging, as we are observing improvements in the effi-
ciency of ant algorithms as the fittest chromosomes
are selected. In order to compare our implementa-
tions with existing P2P systems, we plan to imple-
ment ants mimicking the behavior of Freenet [3] and
Gnutella [6].

The framework is being written in Java, in order
to exploit its portability, its rich security features
and the possibility of remotely download code on
demand. These features are particularly useful in
agent-based systems like Anthill, enabling the trans-
mission of the agent code and its execution in a con-
trolled environment. We have implemented a class
loader capable of requesting the downloading of the
code of an unknown ant from the nest that sent it,
and caching downloaded ant classes on the local
disk to avoid multiple downloads. Using the security
model of Java, it has been possible to confine the ex-
ecution of ants in a controlled environment (“sand-
box’), forcing them to use the AntView interface as
the only mean of interactions with the nest.

5 Conclusions

In this paper, we have introduced a new approach for
building distributed peer-to-peer applications and
we have presented a programming framework aimed
at supporting this approach.

The Anthill framework is based on the separation
of roles existing between nests and ants. Nests
constitutes the infrastructure on which P2P appli-

5



cations will be builded; they manage low-level de-
tails as security, communication, neighbor manage-
ment, resource management, ant scheduling, and so
on. Ants, on the other hand, will implement the
actual P2P algorithm through which high-level ser-
vices will be provided. Using Anthill, developers
of new P2P systems are free to concentrate their ef-
forts on the design of ants, and thus on the design of
efficient and adaptive peer-to-peer protocols.

Anthill may be compared with similar efforts of de-
veloping new infrastructures for the P2P arena. Our
framework differs from the proposals from the P2P
Working Group and from Sun, as it is aimed at sup-
porting the design and the analysis of new P2P pro-
tocols, rather than simply establishing new commu-
nication and programming standards for P2P. Nev-
ertheless, we believe that if opportunely integrated
with them, our framework will be able to bene-
fit from these standards. We are particularly inter-
ested in JXTA, that like Anthill is based on Java
and promises to provide security features currently
missing from Anthill. We plan to investigate inter-
sections among our project and JXTA as soon as a
specification for it is available.

As mentioned above, the Anthill project started re-
cently. Much work remains to be done, including
the implementation of new ant algorithms, the def-
inition of realistic test scenarios on which simulat-
ing the behavior of ants, and the realization of the
run-time genetic framework. The Anthill project is
based on an open-source license. We welcome every
form of cooperation on the project, such as the de-
velopment of ants implementing new P2P protocols,
but also the improvement of the Anthill framework
prototype implementation. In fact, an additional aim
of this paper is the stimulation of such cooperations.
We plan to use Anthill in the “Complex Adaptive
Systems” course to be held in the Department of
Computer Science at the University of Bologna dur-
ing second semester 2001. Students will be invited
to experiment with our framework by developing
new ant implementations and comparing them.

References

[1] S. Adler. The Slashdot Effect: an Analysis of
three Internet publications. Linux Gazette, 38,
March 1999.

[2] G. Di Caro and M. Dorigo. AntNet: Dis-
tributed Stigmergetic Control for Communica-

tions Networks. Journal of Artificial Intelli-
gence Research, 9:317–365, 1998.

[3] I. Clarke, O. Sandberg, B. Wiley, and T.W.
Hong. Freenet: A Distributed Anonymous In-
formation Storage and Retrieval System. In
Hannes Federrath, editor, Proceedings of the-
Workshop on Design Issues in Anonymity and
Unobservability, Berkeley, CA, July 2000.

[4] Distributed.net Home Page. Url: http://
www. distributed. net.

[5] M. Dorigo, V. Maniezzo, and A. Colorni. The
Ant System: Optimization by a Colony of Co-
operating Agents. IEEE Transactions on Sys-
tems, Man, and Cybernetics-Part B, 26(1):29–
41, 1996.

[6] Gnutella Home Page. Url: http://
gnutella. wego. com.

[7] Groove Home Page. Url: http:// www.
groove. net.

[8] K. Kayl. Pushing the Boundaries of Dis-
tributed Computing. Url: http:// www.
javasoft. com/ features/ 2001/
02/ peer.html.

[9] M. Mitchell. An Introduction to Genetic Algo-
rithms. MIT Press, April 1998.

[10] Napster Home Page. Url: http:// www.
napster. com.

[11] A. Oram. Peer-to-peer Makes the Internet In-
teresting Again. Url: www.oreillynet.-
com/pub/a/linux/2000/09/22/-
p2psummit.html.

[12] The Peer-to-Peer Working Group Home
Page. Url: http:// www. peer-to-
peerwg. org.

[13] R. Schoonderwoed, O. Holland, J. Bruten, and
L. Rothkrantz. Load Balancing in Telecommu-
nications Network. Adaptive Behavior, 5(2),
1997.

[14] Seti@Home Home Page. Url: http://
setiathome. ssl. berkeley. edu.

6


