

Francesco Russo

JXTAnthill

July 2002

Master’s Thesis
Department of Computer Science

University of Bologna

The JXTAnthill Project 1

Index

Chapter 1: The JXTAnthill Project

1.1 Introduction, 4

Chapter 2: Complex Systems

2.1 Introduction, 8
2.2 Complex Systems, 9
2.3 Cellular Automata and Universal Computation, 10
2.4 Complex Systems and Insect Colonies, 16
2.5 Self−Organization, Insects and Virtual Ants, 17

2.5.1 Foraging in Ants, 18
2.5.2 Construction of pillars in Termite Colonies, 18
2.5.3 Dead ants corpses clustering in Ant Colonies, 19
2.5.4 Virtual Termites, 20
2.5.5 Swarm and Heat−Bugs, 20
2.5.6 Biods: Flocks of Virtual Birds, 22

2.6 Conclusions, 23

Chapter 3: Peer−to−Peer Computing (P2P)

3.1 From Distributed Systems to P2P, 24
3.2 Distributed Systems Topologies, 25

3.2.1 Centralized, 26
3.2.2 Ring, 27
3.2.3 Hierarchical, 28
3.2.4 Decentralized, 29

3.3 P2P, 31
3.4 The Five Models of P2P, 32

3.4.1 Atomistic Model, 32
3.4.2 User Centered Model, 32
3.4.3 Data Centered Model, 33
3.4.4 Web Mk2 Model, 33
3.4.5 Compute Centered Model (Distributed Processing), 34
3.4.6 Formal and Informal P2P Applications, 34

3.5 Analysis − P2P is not enough, 35
3.5.1 Case Study 1: Gnutella and Freenet, 35
3.5.2 Case Study 2: SETI@home − Massively Distributed Computing, 37

3.6 Conclusions, 38

The JXTAnthill Project 2

Chapter 4: Project JXTA

4.1 Introduction, 40
4.2 Project JXTA Objectives, 41
4.3 Project JXTA Architecture, 42
4.4 Project JXTA main components, 44

4.4.1 Peers, 44
4.4.2 Peer Groups, 45
4.4.3 JXTA Pipes, 46
4.4.4 Advertisements, 47

4.5 JXTA IDs, 51
4.5.1 JXTA IDs properties, 52

4.6 JXTA Protocols, 53
4.6.1 Peer Resolver Protocol, 54
4.6.2 Peer Discovery Protocol, 54
4.6.3 Peer Information Protocol, 56
4.6.4 Pipe Binding Protocol, 56
4.6.5 Endpoint Routing Protocol, 57
4.6.6 Rendezvous Protocol, 58

4.7 Conclusions, 59

Chapter 5: The Anthill Project

5.1 Introduction, 60
5.2 The Anthill Project’s main components: Nests & Ant Species, 62

5.2.1 Anthill Nests, 62
5.2.2 Anthill Ant Species, 64

5.3 The Anthill Project Evolutionary Framework, 64
5.4 The Anthill Project Three Layers Structure, 65

Chapter 6: JXTAnthill: JXTA based Anthill binding

6.1 JXTAnthill, 67
6.2 JXTAnthill: Project’s Architecture, 67
6.3 Package anthill, 69
6.4 Package anthill.nest, 70
6.5 Package anthill.storage, 71
6.6 Package jxtaimpl, 73
6.7 JXTAnthill: JXTA−Enabled Services, 77
6.8 Package jxtaimpl.storage, 79
6.9 Package jxtaimpl.ids, 81
6.10 Package ants, 82

The JXTAnthill Project 3

Chapter 7: JXTAnthill: Implementation

7.1 Introduction, 84
7.2 JXTAnthill: Nest Configuration, 84
7.3 JXTAnthill: Nest start up, 90
7.4 NeighbourManager Implementation, 92
7.5 GateServiceAdvPublisher Implementation, 92
7.6 Nest Implementation, 93
7.7 GateService Implementation, 95
7.8 Manager & Executor Implementation, 97
7.9 DownloadService Implementation, 97
7.10 AnthillResource Implementation, 99
7.11 Identifiers Implementation, 99
7.12 Storage Implementation, 101
7.13 Rendezvous and Relay Nests, 102
7.14 JXTAnthill Deployment, 105
7.15 Conclusions and Future Improvements, 106

Chapter 8: Example Application and Simulation Results

8.1 Example Application: Technical Report Sharing, 109
8.2 TechRep: Technical Report Sharing Application, 111
8.3 Background: The Bib Syntax (CS−TR−V2.1), 111
8.4 Package TrBibReader, 113

8.4.1 Class TrBibReader.Reader, 114
8.4.2 Class TrBibReader.Bib2XML, 114
8.4.3 Class TrBibReader.BibFormatException, 116

8.5 Resource Sharing Ant Species: Gnutant, 116
8.6 Gnutant Ant Species: Simulation Results, 118

Appendix − UML Sequence Diagrams

A1 Nest Start Up Sequence Diagram
A2 Gate Service Sequence Diagram
A3 Download Service Sequence Diagram

Bibliography

The JXTAnthill Project 4

1 The JXTAnthill Project

1.1 Introduction

The Anthill Project aims to define a new framework for agent−based peer−to−

peer (P2P) distributed systems development, simulation and deployment. As far

as P2P systems are concerned, today they are becoming extremely popular

since they potentially let us harness the computational power of a huge number

of desk−top machines otherwise simply used as dumb client nodes in the actual

Internet. In fact the P2P distributed paradigm foresees networks composed by

nodes capable of acting both as client and server. What this entails is an

improved fault−tolerance and a greater scalability, properties desirable for every

distributed system. The Anthill Project is rooted in complex adaptive systems

(CAS). Complex adaptive systems are dynamical systems, so systems having

one or more moving components, characterized by being made up of a huge

number of elementary constituents capable of interacting with one another within

their environment. Such systems are said to be greater than the sum of their

own parts (holism) since, despite the simplicity shown by their basic

components, they are able to show astonishing behaviors: this is what is called

the emergent behavior of the system. Complex systems can expose deeply

different dynamics according to the degree of interaction that takes place among

the system’s constituents. Basing ourselves on the former statement, four

classes of systems can be found: systems with a fixed−point dynamic, periodic

systems, systems following a random−like pattern (chaotic), and systems

exposing a kind of behavior which stands between periodic systems and chaotic

systems [TCBON]. These are the systems we are interested in. The Anthill

Project is rooted in complex systems since we think there are similarities

between peer to peer systems and complex systems: both of them are

The JXTAnthill Project 5

composed by a number of parts capable of interacting with one another. Even

further CASs offer several appealing properties such the total lack of

centralization and control, an amazing ability to tolerate rapid changes in their

own structure, and a kind of self−organization towards a global configuration.

One fundamental and surprising thing is that in the critical area between periodic

and chaotic systems, reside systems known to be capable of universal

computation. What this means is that relying on this new computational

paradigm it is now possible to solve problems in an inherently decentralized way.

Now it is evident why borrowing concepts and ideas from CAS, for developing a

framework for P2P applications development. The Anthill Project is based on the

usage of mobile agents as well. In the Anthill terminology, mobile agents are

called ants. Ants societies are a real example of CAS we can find in nature. This

CAS instance is of great interest since it has always lent itself to be easily

implemented for successfully solving many optimization problems. So, in the

Anthill framework, virtual ants are in charge of travelling across the network

according to a simple set of rules for achieving their goals. In the Anthill Project,

emergent behavior manifests itself as swarm intelligence whereby the collection

of simple ants of limited individual capabilities achieves “intelligent” collective

behavior [BMM−09−01]. Along with this thesis we propose an Anthill Project

implementation − an Anthill binding − based on the JXTA Technology:

JXTAnthill. JXTA is an open source project promoted by Sun Microsystems, Inc.

What Project JXTA defines is a platform for developing P2P applications

guaranteeing the following properties: interoperability, ubiquity, platform

independence (see Chapter 4 for details). JXTAnthill is the result of the

integration of the Anthill Project with the JXTA Technology. Basing our Anthill

binding on JXTA we have avoided to deal with peer group establishment and

management, peer monitoring and firewall and NAT traversing issues [PJJFPG].

Furthermore JXTA provides basic security mechanisms such as scure

communication channel implementation based on Transport Layer Security

(TLS) Version 1. The TLS specification is currently under development by the

The JXTAnthill Project 6

Internet Engineering Task Force (IETF) Network Working Group [SPJ]. For all

these reasons we thought of JXTA as being the most suitable technology for

developing our first Anthill binding. For demonstration purposes we propose an

example application developed on top of JXTAnthill. This is a P2P document

sharing application which uses a virtual ant species named Gnutant for

implementing the document sharing service. This ant species mimics the

behavior of two of the most noticeable protocols devised for P2P content

sharing, Gnutella and Freenet, mixing the pros of both of them.

This thesis is organized as follows:

� Chapter 2. The first chapter deals with complex systems. Cellular Automata

and the Game of Life are introduced for showing the different dynamics such

systems expose, and for giving an informal demonstration of how the Game

of Life is capable of universal computation. Insect societies are taken into

account as natural instances of complex systems, and interesting examples

about virtual ants and virtual termites are proposed.
� Chapter 3. This chapter introduces P2P distributed systems. It is shown how

distributed systems have evolved in the years from a purely centralized

approach to a completely decentralized one. Three cases of study are

proposed: Gnutella, Freenet, SETI@home.
� Chapter 4. This chapter covers the JXTA Technology topic carrying out a

detailed survey over its architecture, the set of protocols it defines and their

behavior, the message format etc.
� Chapter 5. This chapter defines the aims of the Anthill Project and introduces

concepts fundamental to the reminder of the thesis.
� Chapter 6. This chapter presents a detailed architectural description of both

the Anthill Project and the JXTAnthill binding.
� Chapter 7. This chapter is concerned with implementation details of the

JXTAnthill binding

The JXTAnthill Project 7

� Chapter 8. This chapter introduces a sample application based on a virtual ant

species called Gnutant. This ant species implements a file sharing service.

The JXTAnthill Project 8

2 Complex Systems

2.1 Introduction

One of the inspiring concepts of the Anthill Project has surely been what

nowadays we know as Complex Systems. This class of systems exposes many

interesting properties that make them appealing for anyone looking for inherently

decentralized solutions to a wide variety of problems. Before starting out with

Complex Systems and their properties, it could be useful to carry out a survey

about Dynamical Systems since they are closely related to Complex Systems.

A dynamical system might be informally defined as something having a dynamic

component, or equally anything which has motion. Even if this definition could

sound simplistic to someone, it is really what is needed in order to identify such a

system [TCBON].

When analyzing a dynamical system, we are interested in describing the moving

components of the system as well as the set of rules governing its dynamics.

Based on these considerations it is possible to draw a grading of dynamical

systems exposing similar properties. This classification envisages four different

types of dynamical systems, which are brought together by the same kind of

dynamic. The simplest one has a so called fixed point dynamic. This means that

the system will eventually enter in a state from which it will never get out. For

example one could think of a ball rolling on a plain surface until it has no more

momentum to carry on going. The second class is composed by systems having

a periodic dynamic. For example such a system could be an idealized pendulum.

The next class is about systems characterized by the so called quasiperiodic

dynamic. We have a quasiperiodic motion when the system roughly behaves

The JXTAnthill Project 9

always in the same way, where “roughly” means that the system will experience

states always close to already experienced ones, but will never repeat anyone of

them. The types of dynamical systems described so far all expose a certain

degree of predictability: being aware of the system’s initial configuration and its

initial state, it is possible to predict its future configurations. But there is also a

fourth class envisaging systems that do not expose predictability: the Chaotic

Systems. These systems differ from anything else since there are no specific

patterns in their behavior, and due to their complexity any long term prediction is

impossible to achieve. The amazing thing to highlight is that such systems are

not the exception but the very huge majority in nature, and what previously was

thought to be a random phenomena is nowadays known as chaotic. So, the main

intuition here is that in such systems it is false that there are no rules and that

the overall behavior is completely random, instead the set of involved rules and

variables is just too complex and prediction is admitted only in the short term.

Now, what stands behind this digression? Complex systems expose all the

properties listed so far, the full spectrum of possible behaviors, and so can be

thought as a particular instance of Dynamical Systems.

2.2 Complex Systems

A complex system is a dynamic system itself, but characterized by a

fundamental property:

Complex Systems are things that consist of many similar and simple parts. Often

the underlying behavior of any of the parts is easily understood, while the

behavior of the system as a whole defies simple explanation [TCBON].

The JXTAnthill Project 10

Complex systems are characterized by the presence of a set of elementary parts

capable of interacting with each other. They can be said to be elementary since

they are not supposed to expose any kind of intelligence or cleverness.Generally

they behave in a very simple way and so such a system could even be described

by a relatively reduced set of rules. The most interesting thing about complex

systems is tightly related to their building blocks’ simplicity: unless their single

simple parts’ inability to perform amazing tasks if taken as a unit, the overall

system’s behavior can sometimes astonish the observer. That’s what is called

the Emergent Property of the system. By changing the type and form of

interactions that take place among the parts of such a system, it becomes

globally goal−seeking while only local information is passed around by the parts.

In other words we might say that the whole system seems to be greater than

the sum of its parts (hol ism). This is really encouraging since it means that a

collective form of computation can take place without an explicit global algorithm.

2.3 Cellular Automata and Universal Computation

In order to deal with complex systems many different formalisms have been

devised. In this chapter we introduce and use Cellular Automata for describing

the relationships existing between complex systems and the four different

dynamics formerly discussed. Cellular automaton have been devised by John

von Neumann in the 1940s, for studying the reproduction process. The simplest

CA we can refer to is the one−dimensional cellular automa:

Imagine a linear grid that extends to the left and right. The grid consists of cells

that may be in only one of a finite number of states, k. At each time step the next

state of a cell is computed as a function of its neighbours local in

space [TCBON].

The JXTAnthill Project 11

So if we denote the radius of a cell’s neighbourhood with r, it will embrace a set

consisting of 2r + 1 cells. The function denoting the state of a cell i at time t will

be:

c
i

t

Taking into account the values: k = 2, r = 1, one possible rule table for a one

dimensional CA would be:

Table 2.1 Sample rule table

This table’s content could be compressed in the following rule: “If all the cells in

a neighbourhood are on or off, then the next state is off; otherwise, the next

state will be on”. In 1980s Stephen Wolfram carried out a CAs classification and

the result showed a lot of similarities with the dynamic systems grading formerly

exposed. Infact still four classes are envisaged:

� Class 1. CAs in the first class always evolve to a homogeneous arrangement,

with every cell being in the same state, never to change again.
� Class 2. CAs in the second class form periodic structures that endlessly cilce

through a fixed number of states.
� Class 3. CAs in the third class form random−like patterns that are a lot like the

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

c i−1(t) c i(t) c i+1(t) c i(t+1)

The JXTAnthill Project 12

static white noise in a bad television channel.
� Class 4. CAs in the fourth class form complex patterns with localized structure

that move through space in time. The patterns must eventually become

homogeneous, like Class 1, or periodic like Class 2.

Reasoning by analogy it is easy to find a kind of mapping between Wolfram’s

classification and dynamical systems classification, at least for classes ranging

from first to third. They can be respectively mapped to a fixed point dynamic, a

periodic dynamic and a chaotic dynamic. What defies our intuition are Class 4

CAs since they seem to expose all of the behaviors we can find in the other three

classes. They seem to be somewhere between class two and class three, so

tracing an ideal CA rule space we should proceed in the order of Class 1, Class

2, Class 4 and Class 3. It is even possible to view this classification on a more

formal basis using what is known as the Langton’s Lambda Parameter .

This parameter helps us associating a generic CA to a scalar value, obtainable

being aware of what the CA’s rule set is, and gives us information about the

system’s behavor. Having λ close to 1 entails that the system will expose a

chaotic behavior; values closer to 0 charachterize systems with a fixed−

point like dynamic. Given a CA with parameters k and r (respectively the

number of possible states and radius of a cell’s neighbourhood), the total

number of entries in the rule table will be equal to k2r
�

1
.

Among these rules there is a potentially empty subset envisaging those ones

leading to what Langton identifies as a quiescent state . Such a state is a

state that we can define as being inactive or off. Letting the number of rules

mapping to a quiescent state be n
q we define the Langton’s Lambda

Parameter as follows:

� � k2r
�

1 � n
q

k2r
�

1

The JXTAnthill Project 13

or equally, letting N be the total number of rules:

� � N � n
q

N

λ’s value ranges within the interval [0..1]. If λ is equal to 0, the CA has a fixed

point like dynamic since all rules map to the quiescent state. Otherwise if it is

equal to 1, no rule would map to any quiescent state, and so the CA’s behavior

should sound chaotic. With λ equal to 1 � 1 � k all states will be equally

represented in the rule table.

Figure 2.1 Representation of CA rule space characterized by the λ parameter.

Between λ = 0 and λ = 1 � 1 � k has been experimentally proved that lie all the

cellular automata belonging to Class 2 and Class 4, with Class 4 CAs having a

greater λ then Class 2 CAs in average which confirms Wolfram’s intuition. The

area in which Class 4 CAs reside is known as Langton’s Critical Area, and it is

known that some CAs belonging to this class are capable of universal

computation. One of these CAs is known as “The Game of Life”. This is a two

dimensional cellular automaton devised by John Conway in the late 1960s. It is

described by the following set of rules [TCBON]:

��� 	�
��
���� � ����� � ����� ��� � �� �����! ��"

0.0 1.0λ

The JXTAnthill Project 14

� If a living cell has less than two neighbours, then it dies.
� If a living cell has more than three neighbours, then it dies.
� If an empty cell has three living neighbours, then it comes to life.
� Otherwise (exactly two living neighbours), a cell stays as is.

Now, what do we need in order to state the “Game of Life” is capable of

universal computation? We should show that it allows us to build at least two

logical primitives, i.e. NOT and AND. Before showing how this is possible it is

necessary to introduce three simple classes of object we can find in Life. Firstly

there are simple static objects, configurations that do not change their shape and

position over time. In figure 2.2 there are two patterns of this kind. Secondly

there are periodic structures as well, which we may need both for counting and

for synchronization purposes (Fig. 2.3). Last but not least there is a class of

moving objects. They are generally classified as gliders if they move one

diagonal space in four time steps, or fishes when moving two horizontal or

vertical squares in four time steps. Moving objects like these and making them

collide with each other in a precise manner we obtain a new class of objects, the

Glider Gun which is an object emitting gliders at regular intervals of time.

Figure 2.2 Static objects in Conway’s Game of Life

The JXTAnthill Project 15

Figure 2.3 Periodic object in Conway’s Game of Life

Let us now see how it is possible to obtain the NOT operator starting from these

building blocks. In figure 2.4 we can see a glider gun named # and an

information source named $. $ will emit a glider only when there is a 1 in the

input data stream while the glider gun # will be always emitting a continuos

stream of gliders. When in the source stream there is a 0, the glider coming from

will be able to reach the sink, while when the source stream contains a 1, $
and # will both emit a glider and these two gliders will collide annihilating each

other. The surviving gliders coming from # will exactly correspond to the empty

locations in the glider emitted by $ (remember that # emits a continuos stream of

gliders) so the logical negation of the source. The AND circuit is based on the

same logic and it is represented in figure 2.4: what we want is to have a glider

arriving at $ %&$�' only when both $ and $�' are 1. Since we have an AND and a

NOT circuit we can state that theoretically the “Game of Life” is capable of

universal computation, which is equivalent to say that we have complex systems

capable of universal computation.

The JXTAnthill Project 16

Figure 2.4 Logical NOT primitive and logical AND primitive in Life

2.4 Complex Systems as Insect Colonies

As stated before, complex systems are very common in nature, and observing

natural systems can often lead to amazing intuitions. In this respect insect

colonies have been widely studied in the last years, since they seem to show

many similarities with complex systems. Looking for the possible points of

contact between complex systems and insect colonies, we immediately find out

that in both cases there are many simple components whose behavior can be

characterized as being deeply specialized in some task execution. Furthermore

there is absence of a global knowledge about both the whole system and its

parts, an high interaction between the system’s elementary components, and an

high grade of parallelism in the execution, since agents can act independently of

each other. The most interesting fact is that insect colonies are able to produce

remarkable results that go far beyond the scope of any individual insect, and that

is exactly what is known as emergent behavior. Now, we need to add a new

fundamental concept: the notion of Autonomous Agent.

(

)
¬)

*

+

+-, .
∧
.0/

Sink (Glider or Fish Eater)

The JXTAnthill Project 17

An autonomous agent is a unit that interacts with its environment (probably

consisting of other agents as well) but acts independently from all the other

agents in that it does not take commands from some seen or unseen leader, nor

does an agent have some idea of a global plan that it should be following.

Agents like this, interacting as suggested in the definition, are able to create

globally−order systems: for this reason they are called self−organizing.

2.5 Self−Organization, Insects and Virtual Ants

Self−Organization is defined as a set of dynamical mechanism whereby

structures appear at the global level of a system from interactions among its

lower level components. The rules specifying the interactions among the

system’s constituent units are executed on the basis of purely local information,

without reference to the global pattern, which is as emergent property of the

system rather than a property imposed upon the system. A self−organizing

behavior is characterized by a well known set of properties [SOSI]:

� Positive Feedback: that is the ability of the system to favour one solution

rather than another, trying to adopt more extensively behaviors that have

proved to be more successful.
� Negative Feedback: counterbalances positive feedback and helps to stabilize

the collective pattern.
� Fluctuation: only positive and negative feedback would not be enough for a

system to find new solutions and improve its overall behavior. There must be

some sort of randomness since it enables the discovery of new solutions

unknown in the past history of the system.

The JXTAnthill Project 18

The following examples are relative to natural complex systems, used as a

starting point for showing how they can be artificially reproduced taking

advantage from the properties they expose for solving different kind of problems.

2.5.1 Foraging in Ants

This is one of the most known experiments carried out in this field. The ant

species involved is the Linepithema humile [SOSI]. In this experiment the nest

had been separated from the food source by a bridge with two equally long

branches. It had been observed that letting the ants go from their nest to the

food source and back, once the branch was reached an ant randomly chose

where to go. Now it is necessary to point out that ants, like any other insect

species, are known to lay pheromone trails down while travelling to a food

source. That is probably done in order to be able to come back to the nest and

for instructing the other ants in how to reach the brand new discovered food

source. The interesting fact is that using two different branches the ants were

able to find out which was the shorter one, and kept on choosing it more likely

than the other. This global emergent behavior is due to the fact that initially ants

select at random which branch to traverse back and forth. This implies that in the

same amount of time more pheromone will be laid all along the shortest branch,

and this will draw ants on this same path even in the future. Laying down on the

traversed path the pheromone trail is a form of positive feedback. The negative

feedback is given by the evaporation of the pheromone itself, and we still have

fluctuations since ants may act at random.

2.5.2 Construction of pillars in Termite Colonies

This example involves the Macrotermes termite species [SOSI]. While building

their pillars up, it has been observed that they follow a two−steps process:

The JXTAnthill Project 19

� Non−Coordinated Phase: each termite lay randomly down soil pellets

impregnated with pheromone.
� Coordination Phase: this is the phase during which the pillar emerges.

What really matters is that the coordination phase does not start unless both the

deposit reaches a critical size and the group of builders is sufficiently large. Even

in this example, the positive feedback is given by the pheromone−soaked soil

pellets: in this way termites are encouraged to deposit more pellets where they

feel there is more pheromone, making more likely the coordination phase. But if

the number of termites in the building team is simply not enough the pheromone

is bound to rapidly evaporate, originating a negative kind of feedback and

making impossible the coordination phase start up. Fluctuations are given by

changes in the termites population size: this affects the probability to have

success in the future.

2.5.3 Dead ants corpses clustering in Ant Colonies

The clustering phenomena has been studied in the Pheidole pallidula ant

species [POKA]. The scenario is a two dimensional space over which are spread

corpses of dead ants. The space is the ant colony’s foraging area. It has been

observed that an ant behaves roughly as follows: it takes a random walk through

the two dimensional area and when it runs into a dead body or a dead item, it

picks it up with a given probability 1 . 1 tends to increase if near the discovered

body there are no other dead items, so if the body does not belong to an already

existing cluster; 1 tends to decrease otherwise. So the global behavior of the

colony results as aimed to the clustering of objects. Even in this case pheromone

plays an important role since trails leading to already existing clusters can

improve the overall process.

The JXTAnthill Project 20

2.5.4 Virtual Termites

After having observed what we can find in nature, our interest gets focused on

what we are really interested in: can we reproduce such a behavior having self−

organization and emergent properties for solving problems in a truly

decentralized manner? As our first example we refer to a virtual termites species

whose aim is the clustering of resources in a two dimensional space. The task is

the same performed by he Pheidole pallidula ant species. The behavior of this

theoretical virtual termite devised by Mitchel Resnick is based on three simple

rules [TCBON]:

� Wander around aimlessly, via a random walk, until bump into a wood chip.
� If the termite is carrying a wood chip, it drops the chips and continues to

wander.
� If the termite is not carrying a wood chip, it picks up the one that it bumped

into and continues to wander.

The proposed rule set is very simple; nevertheless, the resulting behavior is

amazingly complex. This system has been formalized using a cellular automata

which has been iterated hundreds of thousands of time steps. The result has

been the birth of a kind of order in the primordial chaotic space where resources

are gathered in clusters equally distributed over the area. This termite species

could be obviously modified in order to obtain different results or in order to

improve the overall performance.

2.5.5 Swarm and Heat−Bugs

Swarm is a software package for multi−agent simulation of complex systems,

originally developed at the Santa Fe Institute. The basic architecture of Swarm is

the simulation of collections of concurrently interacting agents. The world is

The JXTAnthill Project 21

represented as a two dimensional grid

over which autonomous agents, the heat−

bugs, can move. Each cell in the grid has

a property, its heat, which changes over

time evaporating and diffusing. In figure

2.5 this property is represented using

different red color gradations. Heat−bugs

are the green dots, and they simply aim to

find a place in their two−dimensional

environment where there is a temperature

fitting their needs. How does this system evolve? Each time step every heat−bug

moves one step to a nearby location looking for the place that makes it happiest,

and emits a bit of heat. Since any heat−bug by itself can be warm enough, in the

long term the population will tend to cluster together. In order to find some

mapping between heat−bugs and the real world we are living in, this problem

could be thought as an optimization problem, where one wishes to maximize

each heat−bug happiness. As shown in figure 2.6 we can achieve this goal even

dealing with a system based on simple rules. Even in this case the global state

of happiness seems to be an emergent property.

Figure 2.6 Heat−Bugs average unhappiness over time

The JXTAnthill Project 22

2.5.6 Boids: Flocks of Virtual Birds

The last example is about what is usually called a boid. A boid is a virtual bird

whose behavior is dictated by four simple rules. Boids have been devised in

order to study the dynamics ruling the flocks of birds. Many bird species are

often capable of such astonishing evolutions that one might wonder how they

can do that. Apparently this global behavior can be reproduced creating boids

who simply follow the given list of rules:

� Avoidance: Try and reduce the chance of collision with other boids in the

flock, dynamically changing the distance from them.
� Copy: Fly following the general direction the flock is moving by averaging the

other boids’ velocities and directions.
� Center: Try to be in the most inner area of the flock, for safety reasons.
� View: Move laterally away from any boid that blocks the view.

Having a number of boids flying over the

two dimensional space it can be observed

a global behavior pretty close to the one

showed by flocks of birds in nature: the

boids reach the typical “V” formation. So

we can state this is again an emergent

property of the system we defined only

tracing one boid’s behavior, which may

even seem selfish since every agent tries

an maximize its own degree of

satisfaction.

The JXTAnthill Project 23

2.6 Conclusions

What we argue at this point is that with complex systems and autonomous

agents, each individual behaves competing and cooperating with the others

according to the set of rules defining what it is bound to do. Despite how these

rules might seem, selfish oriented or based on pure cooperation, the interesting

thing is the overall behavior we get back. In the boids example, the set of rules

yield an emergent property which looks a lot like bird intelligence. We can

consequently identify many different layers defining a system. Each layer is

characterized by properties and behaviors potentially different from the ones we

might observe at the lowest levels of the system itself. The more our attention

gets focused on the deepest layers, the simpler components can be found:

agents whose behavior can easily be defined by a simple set of rules. Adding

recursion, multiplicity and parallelism to these elementary building blocks we can

get emergence and self−organization, and use these systems and their

properties in order to solve problems in a purely decentralized way.

The JXTAnthill Project 24

3 Peer−to−Peer Computing (P2P)

3.1 From Distributed Systems to P2P

As networking is becoming a widespread reality, distributed systems are

replacing centralized systems where they begin to show their weaknesses. This

is due to the fact that distributed systems expose a set of interesting properties

making them more suitable than any other known solution for solving a huge

variety of problems. Before going on it is necessary to provide a definition of

distributed systems:

A distributed system is a collection of sequential processes and a network

capable of implementing some sort of communication among the given

processes [DS].

This definition does not clarify how processes should communicate with one

another, or which kind of communication pattern the underlying network

infrastructure should be able to implement and guarantee since we are not

interested in such details. Switching from a purely centralized solution to a

distributed system involves facing and solving a set of new non−trivial problems.

Anyway, choosing a distributed system we gain especially in terms of reliability,

performance and scalability. Having a centralized system means having a single

node in charge of doing the whole job, and if this node crashes the service will

not be available anymore. Since we cannot be completely sure a machine will

never fail, what we can do is try and reduce as much as possible the overall

probability of failure, and one way for achieving this goal is known as replication

in space. This implies that having n machines cooperating in some way for

performing the same task, reduces the probability for the overall system to

become unavailable.

The JXTAnthill Project 25

That is why distributed systems improve reliability. We can even gain something

in performance imposing a specific cooperation logic within the system, for

example aiming to equally balance the load among the nodes composing the

cluster, or delegating specific tasks only to specific nodes. One of the main

disadvantages of a centralized system is that it cannot easily grow. In this case

scalability is strictly limited by the capacity of the server, while in a distributed

system scalability is improved by the ability of dynamically adding new nodes to

the system. Anyway distributed systems are not a panacea by themselves.

There are many different kinds of topologies characterizing distributed systems,

each one exposing pros and cons that make a choice more or less adequate to

designers’ or developers’ needs.

3.2 Distributed Systems Topologies

There are four different distributed system topologies, namely centralized, ring,

hierarchical and decentralized. Each of them exposes merits and weaknesses at

the same time, and that is the main reason why hybrid topologies are often

better. Appropriately mixing them enables to compensate for lacks in one

topology profiting from the valuable properties we can find in another one. Since

topology might be considered at different levels (physical, logical) for this

analysis topology is thought in terms of information flow [DST]. In order to

compare each topology pattern with the others, the following seven properties

are evaluated:

� Manageability: How easy is to keep the whole system up and running?
� Information Coherence: How authoritative is information in the system? If

some of data is found in the system, is that data correct?
� Extensibility: How easy is adding new resources to the system?

The JXTAnthill Project 26

� Fault Tolerance: How does the system tolerate crashes?
� Security: Security is a truly wide topic and goes from avoiding intrusions to

preventing people from injecting undesired information into the system etc.
� Resistance to lawsuits and politics: How hard is for an authority to shut the

whole system down?
� Scalability: How large can the system grow?

3.2.1 Centralized

Centralized systems are surely the most common pattern we can find in

networked systems nowadays. That is the so called client/server model, and has

been used for deploying databases, web servers, and many other simple

distributed systems for years. The whole logic of the system resides within one

single node, the server, whose aim is performing tasks on behalf of client

machines connected to it.

� Manageable: Yes. Since centralized systems consist

of a single node, any maintenance order can be easily

performed without major complications.
� Coherent: Yes. As there is a single point where the

logic of both the information and the system reside, it

is relatively easy to keep the content of the system

coherent.
� Extensible: No. If having a single node can improve manageability and

coherency, this characteristic disadvantages extensibility: resources can only

be added to the single node composing the system, and the node obviously

exposes its own capacity extents.
� Fault−Tolerant: No. As stated before, systems consisting of one single node

are less reliable than systems made up by a cluster of cooperating machines.
� Secure: Yes. It is surely easier to protect one single node than a system

...

The JXTAnthill Project 27

exposing a complex structure, so systems like this can be thought as being

relatively secure.
� Lawsuits−Proof: No. In order to shut the whole system down, forcing the

disconnection or the crash of the centralized node is sufficient.
� Scalable: Not completely. Centralized systems are not expected to scale over

a certain threshold due to their physical extents: maximum number of

concurrent processes admitted, maximum number of simultaneous

connections, storage capacity etc.

Due to fault tolerance related limits, generally such a system is improved by

using a cluster of machines transparently acting as a single node (see the next

topic) or by using back−up nodes ready to replace the crashed one if necessary.

3.2.2 Ring

As stated before, sometimes it is a good idea replacing a centralized server with

a cluster of machines, mainly in order to improve reliability. Generally these

clusters are arranged in a ring topology, with all the nodes acting transparently

as a centralized server.

� Manageable: Yes. Such a system often has a single

owner, and is managed like a centralized system

would be. So, as far as manageability, coherency,

and security are concerned, these systems do not

differ from a centralized topology too much.
� Coherent: Yes. Since the whole system belongs to

one owner or a single organization, its coherency

should be easily granted.
� Extensible: No. The single−owner restriction means a user will need the

owner’s endorsement for adding a resource into the ring.

The JXTAnthill Project 28

� Fault−Tolerant: Yes. This is the main advantage of a ring topology over a

centralized one. The replication in space improves the system’s reliability.
� Secure: Yes. Protecting a cluster of machine instead than one single node,

does not require a deeply greater effort.
� Lawsuits−Proof: No. If someone would shut the system down, he had just to

disconnect the cluster from the network, which is pretty easy to do.
� Scalable: Yes. Ring systems scale better than centralized ones: we can

improve system’s performance just adding a new node to the cluster.

3.2.3 Hierarchical

This pattern is the most common in the Internet today. By the name, it is easy to

understand what this topology looks like. One of the most known hierarchical

systems is maybe the Domain Name Service (DNS), where authority flows from

the root name−servers, to sub−level servers. Another interesting example of

hierarchical system is the Network Time Protocol (NTP). NTP has over 175000

hosts with most of them being two or three links away from a root time source.

� Manageable: Partially. Having a well defined architecture might bring

someone to guess hierarchical systems are highly manageable. That is not

completely true: the wider the system becomes, the harder it gets to manage

it easily.
� Coherent: Partially. Coherency is usually achieved with a cache consistency

strategy.

The JXTAnthill Project 29

� Extensible: Yes. Any host can easily add

data to the system, but it is important to

take into account how data propagates

through the system.
� Fault−Tolerant: Partially. Their are not

completely fault tolerant, since the system’s

root still remains a single point of failure.
� Secure: Partially. The growing complexity of

these systems renders securing them

harder than securing a centralized system or a system characterized by a

pure ring topology.
� Lawsuits−Proof: Partially. Having a single point of failure (the root) renders

these systems rather fragile.
� Scalable: Yes. Hierarchical systems scale reasonable well. As an example

consider the DNS which has scaled from a few thousand hosts to hundred of

millions over the last 15 years.

3.2.4 Decentralized

In such a topology there is not a well defined

architectural pattern the overall system should

reflect. All the node are only required to be able

to interact symmetrically with one another,

playing equivalent roles. Maybe one of the most

important examples of decentralized systems is

the Border Gateway Protocol. BGP has been

devised in order to replace the Exterior Gateway Protocol (EGP) when it started

out showing its weaknesses: EGP forced a treelike topology onto the Internet

and it did not allow for the topology to become more general [CNET]. So, this

shows us how hierarchical structures can sometimes become no more useful

The JXTAnthill Project 30

due to their inherent lack of elasticity, and in these cases decentralized solutions

can surely fit better.

� Manageable: Partially. It depends on how huge the system is and whether the

system is managed by a single authority or not. This means that if the

decentralized system is made up of nodes belonging to individuals who get

together for some common purpose or interest, then each node will be

independently managed by the user it belongs to. On the contrary if a single

organization manages a widely distributed system, it would not be easy

anymore to accomplish this task.
� Coherent: No. Since there is not a centralized management, coherency is

mainly up to users, and there is no control over their activity.
� Extensible: Yes. Extensibility is one of the major properties exposed by

decentralized systems. Each node can freely add resources to the system, but

the propagation scope of each update strongly depends on the underlying

protocol.
� Fault−Tolerant: Yes. Decentralized system are extremely fault tolerant: each

node acts independently both as client and server, so a failure does not

deeply affect the overall behavior, especially when resources are replicated in

space through the system.
� Secure: Depends. It depends on how the system has been designed. If we

adopt a restriction policy for users joining the system, along with secure

communication channels, the system might reach a good level of security.
� Lawsuits−Proof: Strongly. Not having any form of centralization, it is

impossible to shut a purely decentralized system down.
� Scalable: Partially. As we are going to see this property depends on the

underlying protocol.

The JXTAnthill Project 31

3.3 P2P

Sometimes choosing the right topology is not enough. What makes the

difference is the way in which nodes interact with one another. A new paradigm

for building distributed applications called peer to peer has recently gained

particular attention, not only among researchers. Let us now give a definition of

what P2P is:

Peer−to−Peer (P2P) computing is the sharing of computer resources and

services by direct exchange between systems. These resources and services

include the exchange of information, processing cycles, cache storage, and disk

storage for files.

P2P computing is not as new as one might think. About thirty years ago

institutions were working on architectures that now would be labeled as peer−

to− peer. All the nodes were able to perform routing, to act both as server and

client for services like ftp or telnet and so on. From that days on, Internet was

shaped in a more hierarchical way, and that is the Internet we know today. But

all along the way from 1960s to our days many things have deeply changed.

Today we have a huge number of nodes connected to the network, most of them

intermittently, and all having a great amount of unused resources (CPU cycles,

storage, content management etc.). The current client/server model does not let

us benefit from what is usually called “the dark matter” of the Internet, the

amazingly huge set of resources available out there [P2PAM]. P2P computing

mainly has two really interesting advantages:

� First, it let us obtain remarkable results in a cheap way. P2P let us collect

resources scattered all around the globe, and coordinate them for

accomplishing one single task. Doing something like this with a centralized

The JXTAnthill Project 32

approach would be inadmissible (see the SETI@home Project case study at

the end of this chapter).
� The second important issue is about bandwidth. By decentralizing resources

and redirecting users to other users’ desk−tops for downloading resources,

Napster, the most famous P2P application, reduced the load on its servers to

the point where it could cheaply support tens of millions of users. A company

called CenterSpan has roughly estimated that gathering together the whole

content of P2P systems like Gnutella and Napster, and having it delivered

from one central server, one should need something like 25000 T1 lines

costing 25 million dollars a month. In short peer to peer cannot only distribute

files, it can also distribute the burden of supporting network connections

eliminating bottlenecks at central sites and equally importantly at their

ISPs [P2P4A].

3.4 The Five Models of P2P

3.4.1 Atomistic Model

This is the purest form of peer−to−peer computing. There is no mediation by

servers, so peers must be able to establish communication channels by

themselves. An atomistic approach may be applied for example if each user/peer

would always be associated with the same address.

3.4.2 User Centered Model

User centered applications utilize a directory (distributed or located on a single

server) to provide an efficient way for users to make connections with one

another on the network. Once two clients are connected, the system will behave

The JXTAnthill Project 33

in a purely peer−to−peer manner. The centralized directory acts just as a

rendezvous place, a well known point where peers can find each other. Real

applications based on this model are ICQ and AOL Instant Messenger.

3.4.3 Data Centered Model

Data centered peer−to−peer applications allow users to search and access data

and content held on other users’ systems. Usually applications belonging to this

class act in the following way: when a peer becomes member of the group, an

index containing the set of resources it is willing to share is added to the group’s

global index, which may be distributed or not. Queries are executed over this

global index while any other task is carried out in a completely decentralized

manner. More advanced implementations of this model can be proposed,

especially in order to overcome the need of a global index (autonomous agents

performing searches according to some logic − the Anthill Project).

3.4.4 Web Mk 2 Model

Web Mk 2 model [GC] is a convergence of all the above models with current

Web architectures and infrastructures: today’s browsers will evolve into user−

configurable workspace managers, which integrate the three types of P2P

interactions previously described into task−specific work environments. P2P

applications belonging to this model will heavily rely upon agents (software−

bots). Applications and data will reside in multiple locations, with users being

able to interrogate information held on servers, other user systems, or even

bypass server−based computing when desired transparently.

The JXTAnthill Project 34

3.4.5 Compute Centered Model (Distributed Processing)

With distributed processing we have an unusual kind of peer−to−peer

computing: a node, or a cluster of nodes, is used for splitting the whole job into

small chunks that will be given to nodes in charge of performing the whole

processing. The nodes can even be geographically distributed, and they are

used on an opportunistic basis. This approach is truly appealing since it let us

harness massive parallel CPU cycles from under−utilized and low−cost clients

instead than buying expensive parallel machines whose performance might even

be worse than the one exposed by systems based on distributed processing. An

example is the SETI@home project (see the related case study at the end of this

chapter).

3.4.6 Formal and Informal P2P Applications

The last necessary classification of P2P applications concerns security. We can

talk about formal and informal peer−to−peer architectures. It is not accurate

assuming that all peer−to−peer applications are inherently insecure and

encourage wild access to data and resources. peer−to−peer models can be

designed to be:

� Formal: Strictly controlled access to resources, with protocols monitored at

the network level (e.g. NextPage and Groove).
� Informal: Uncontrolled access to resources, so environments not governed by

formal corporate policy (e.g. Napster and Gnutella).

The JXTAnthill Project 35

3.5 Analysis − P2P is not enough

3.5.1 Case Study 1: Gnutella and Freenet

As stated before, choosing the right architectural model is not enough. What P2P

promises to bring us is high availability, fault tolerance and especially scalability.

In order to enjoy all these properties, P2P has to be absolutely sustained by

something more: a suitable protocol. Let us take into account an interesting

example: Gnutella. Gnutella is a protocol for distributed search started by

Nullsoft in March 2000 and then closed due to its potential use for copyright

infringement. Then, when the protocol was reverse engineered, Gnutella

became an open source project and started to spread. A Gnutella network is

roughly made up by peer nodes called servents (server, client), which can

interact with one another through message exchange. There are five message

types:

� PING: this message is meant for testing one peer’s state, so whether it is alive

or not.
� PONG: this is the reply message following a PING message.
� QUERY: this message type is used in order to query the Gnutella network.
� QUERYHIT: if a servent receives a QUERY message and it is able to satisfy

the query, a QUERYHIT message will be sent back to the requesting servent.

This reply message contains enough information for the requesting node to

download the required resource.
� PUSH: A mechanism that allows servents behind firewalls to serve files.

Consider now how a generic search session evolves. When a servent needs a

resource, it will send out a QUERY message to all its known neighbours: in other

words the set of nodes it is already connected to. Every servent receiving such a

The JXTAnthill Project 36

message firstly tries to satisfy the incoming query, secondly − and this is the

interesting point − forwards the query to all the servents it is connected to. What

happens at this step is that this way of widening the scope of queries risks to

saturate the network thus compromising performance and scalability. In fact in

August 2000, users reported that responses to their searches were fewer in

number and slower to arrive than in the past: average Gnutella network traffic

exceeded 10 query/sec per link which is the current 56Kb modem’s

extent [P2PAM]. Other P2P applications define different protocols in order to

avoid problems like the one we have already mentioned, achieving remarkable

results.

Freenet is an adaptive P2P application that permits the publication, replication

and retrieval of data while protecting users’ anonymity.

For our purposes it is interesting only showing how Freenet tries to avoid

saturating the network when performing searches, still granting good results.

The key issue is that queries are not routed aimlessly, but just towards peers

known of being a potentially good target. Each request message contains a key

to be searched, and each node locally has a “routing table” whose entries are

hash values computed over known keys (the keywords). These entries are

coupled with addresses of peers storing resources matching with the given

keyword. This set of information is constantly updated during a node’s lifetime,

so refining the search mechanism with the elapsing of the time and the growing

of the degree of interaction with the other peers. Figure 3.1 shows how this

happens in Freenet.

The JXTAnthill Project 37

Figure 3.1 Search−Path length changing in better over time [P2PAM].

3.5.2 Case Study 2: SETI@home − Massively Distributed Computing for

SETI

The SETI@home project is managed by a group of researchers at the Space

Sciences Laboratory of the University of California, Berkeley. Its main attempt is

to use distributed computing to perform a sensitive search for radio signals from

extraterrestrial civilizations.

Figure 3.2 Cluster of servers for the SETI@home Project [SATH]

The JXTAnthill Project 38

It could be interesting to analyze this project since it does not represent the

classical peer−to−peer application, and it can even show us how valuable is the

amount of resources known as the “dark matter” of the Internet. The

SETI@home works as follows. All the radio signals are collected by the National

Astronomy and Ionospheric Center’s telescope at Arecibo, Puerto Rico, and

recorded continuously onto 35−Gbyte DLT tapes using 2−bit complex samples.

The recorded tapes are shipped to Berkeley and subdivided in small work units.

Each unit is then transferred on temporary storage for distribution to users.

Once a “servant” connects to the “server”, it will be provided with one unit of

work to be processed. All the processing will be potentially carried out off

line, since no interaction is needed until the work has been accomplished and

another unit will be downloaded. The main server is a cluster of three Sun

Enterprise 450 series computers. The first one holds the user database,

more than 2.8 million volunteers at the moment, the second machine holds

the science database (sky coordinates, frequencies etc.) in an ever expanding

array of redundant disks. The third server is in charge of distributing the work

units [SATH]. As of 30 March 2001, 2.895.449 volunteers had run the software,

donating a total of 611.327 years of CPU time for a total 7.793060 x 1020 flop.

At the best of our knowledge SETI@home is the largest distributed computation

project in the world and it may be considered as the largest supercomputer ever

existed as well.

3.6 Conclusions

Since distributed computing has become a widespread reality, researchers’

efforts have been directed towards the discovery of new computational

paradigms able to improve distributed systems’ reliability and performance. In

fact switching from a centralized solution to a purely distributed one is not

enough. There are two major issues to keep in mind when designing a

The JXTAnthill Project 39

distributed system, namely: its architecture and the way distributed processes

interact with one another. The most noticeable architectural patterns

experienced in the years are named ring, hierarchical and decentralized. peer−

to−peer systems are rooted in decentralized distributed systems, but besides

mere architectural issues, their distinguishing characteristic resides in the role

each node plays: the peer−to−peer philosophy foresees the existence of nodes

all exposing the very same set of capabilities. What this means is that each node

can act both as client and server. With this approach both fault tolerance and

scalability turn out to be improved: having multiple nodes playing the same role,

if some of them crashed, the same service would be provided by the remaining

nodes. Not having anymore a single node in charge of providing the whole

service even avoids bottlenecks, thus overcoming the scalability extents today’s

hierarchical systems may expose. Even though topology is important, today’s

P2P systems have shown how protocols are fundamental to the concept of

scalability: the prime Gnutella’s approach to requests propagation caused the

saturation of the GnutellaNetwork in August 2000, so undermining the scalability

expectations of the system. Anyway P2P systems are thought as being really

good promising nowadays, and in order to have an idea of the impact these

systems are supposed to have in the forthcoming years, it is interesting to take a

look at what GartnerConsulting thinks about.

Given e−business trends, market drivers and the importance of partnership

strategies, Gartner expects that P2P content network will become prevalent

within the next five years. Gartner believes that by the year 2003, 30% of

corporations will have experimented with Data Centered P2P applications for

content distribution (0.7 probability). Gartner also believes that half of the current

server−based content management vendors will add Data Centered P2P

functionality to their product offerings by 2005 (0.7 probability)[GC].

The JXTAnthill Project 40

4 Project JXTA

4.1 Introduction

In the former chapter the P2P paradigm for distributed computing has been

introduced, exposing both its advantages and disadvantages. The whole

discussion has been completely carried out on purely theoretical basis except

the two case studies presented at the end of the chapter. But, what about real

P2P computing? Is there any framework meant for peer−to−peer applications

development, or developers should have to rewrite software components every

time they need? It is well know that software reuse is a fundamental subject not

only at enterprise level, since it let us save time by simply using software which

has been both already written and tested by a potentially great number of users,

and this means safer software along with time saving. Furthermore, another not

trivial issue in today’s P2P projects and environments is the absence of a

fundamental property such as interoperability. Applications such Gnutella or

Freenet, defines two disjoint enclaves in the Internet, that are not capable to

cooperate. Services offered by them are often similar, and in some cases

overlapping; this implies unnecessary effort dispersion by developers. In

conclusion, modern P2P applications address only a single function, run

primarily on a limited set of platforms, and are unable to directly share data with

other similar applications. The project JXTA, started at the beginning of the

2001, is aimed at overcoming these problems. The JXTA Project has been

promoted by Sun Microsystems, Inc. before becoming an open source project

distributed under an Apache Software Foundation like licence. But why the name

“JXTA”? As stated in the previous chapter, the Internet has evolved mainly in a

hierarchical way in the last two decades, until peer−to−peer computing has

appeared.

The JXTAnthill Project 41

Figure 4.1 Distributed Computing Evolution [PJOIC]

So we can figure out peer−to−peer computing as being juxtaposed to the

hierarchical client−server model of the Internet, hence the name Project JXTA.

By supporting applications that are collaborative and communication oriented,

Internet use can be more natural, intuitive and productive [PJOIC].

4.2 Project JXTA Objectives

The objectives of the Project JXTA are directly derived from the shortcomings

and inefficiencies examined above. In particular the Project JXTA aims to

address properties like Interoperability, Platform Independence and

Ubiquity [PJTO].

� Interoperability. This is one of the most important issues concerning Project

JXTA. The JXTA technology is designed to enable peers to discover each

other and cooperate to give life to peer groups, i.e. communities of peers

having some common interest. Peers might be part of different P2P systems

or communities. Interoperability is provided defining JXTA as a set of

protocols free to be implemented using whichever platform (language,

operating system and hardware) developers may choose.
� Platform Independence. JXTA is designed to be independent not only from

the programming language and the system platform used, but also to be

The JXTAnthill Project 42

capable to adapt to different networking platforms. Different transport layers

may be adopted, by implementing and using distinct “platform bindings”. A

platform binding is an implementation of a set of the JXTA protocols (not

necessary all of them), aimed for the desired platform.
� Ubiquity. JXTA technology is designed to be implemented on every device

with a digital heartbeat, from sensors to PDA, from routers to desktop

computers and servers and so on.

Before going deeper into the details of how these objectives are satisfied by the

Project JXTA, it might be interesting to take a look at the architecture of the

platform (from now on the word “platform” is used for referring to the the Project

JXTA).

4.3 Project JXTA Architecture

Figure 4.2 Project JXTA three layers architecture [PJJFPG]

While examining the different peer−to−peer systems in use today, the JXTA

team found out a common layering structure. A classical peer to peer system

can so be broken down into three main layers, namely: the Core layer, the

The JXTAnthill Project 43

Service Layer, and the Application Layer. JXTA itself has been designed in order

to reflect this structure with particular attention to each layer’s content (see fig.

4.2).

� JXTA Core. At the bottom layer there is the core of the platform. This level

deals with all the basic components a generic peer−to−peer system needs,

such as peer establishment, group management, communication primitives,

discovering mechanism, routing with firewall and NAT handling, and basic

security services.
� JXTA Services. This layer contains all the components which can be thought

as not essential to every peer−to−peer system, or whose definition should be

left up to developers. For example, services such as file or resource sharing,

indexing and searching, are not necessary to every peer−to−peer system, and

so they should not be placed within the core of the platform but in this middle−

level layer instead.
� JXTA Applications. This layer encloses all the high level applications

developers could devise using the set of services provided by the two lower

layers. It is important to point out how JXTA applications are allowed to

bypass the middle layer (the JXTA services layer) interacting directly with the

core. Again this possibility highlights that components located in the middle

layer are not needed by all peer−to−peer system implementation.

JXTA services can be further classified in Peer Services, Peer Group Services

and JXTA−Enabled Services.

� Peer Group Services. Each peer group defines a set of services that have to

be implemented and supported by every peer belonging to the group or

wishing to be part of it.
� Peer Services. Unlike peer−group services, peer services may be

implemented by each single peer independently from other peers or groups.

The JXTAnthill Project 44

� JXTA−Enabled Services. These are services accessible only using JXTA

Pipes. A JXTA pipe is the platform’s specific communication primitive.

Besides JXTA−Enabled Services it is also possible to define and implement

services accessible using different schemes (RMI, SOAP, XML−RPC, TCP/IP,

etc.) in order to meet users’ specific needs.

4.4 Project JXTA main components

In order to simplify the understanding of the following sections, we define and

describe some of the fundamental concepts upon which the whole platform is

based.

4.4.1 Peers

Peers are networked devices implementing a set of the JXTA Core protocols.

Each peer is characterized by a given peer ID, and a set of network interfaces

called peer endpoints. A peer ID along with its set of associated peer endpoints,

uniquely identifies a peer in the JXTA network. It is not necessary for peers to be

directly connected with one another to communicate, since intermediary peers

can be used for routing purposes. Peers can be classified according to the basic

tasks they are able to accomplish in the JXTA network [PJJFPG]:

� Minimal Peer. Such a peer is only able to exchange messages with other

peers in the network, but it can not be used for message routing or for

advertisement caching on behalf of other nodes. The existence of this class of

peers is meant for letting simple and small devices such as today’s PDAs be

members of the JXTA network.

The JXTAnthill Project 45

� Simple Peer. A simple peer is required to be able to interact with other nodes

exchanging messages and to locally cache advertisements. That is why

simple peers can answer to discovery requests issued by remote peers but

they can neither perform routing operations nor propagate to other peers

requests they receive.
� Rendezvous Peer. A rendezvous peer is a simple peer with the ability to

propagate the requests it receives to other peers in the network, thus

widening each request’s scope. To every discovery request is assigned a TTL

value (Time To Live), which will limit the propagation of the request itself.

Every peer can be pre−configured to be a rendezvous peer, or it can

dynamically become so. In the same way peers can be pre−configured to use

a given rendezvous peer or they can dynamically bind to newly discovered

rendezvous nodes. Rendezvous peer are fundamental since they act as a

gathering point where peers can find each other and enlarge their visibility of

the network.
� Relay Peer. Relay peers are in charge of acting as routers on behalf of peers

who are not able to directly reach other nodes in the network, both due to the

existence of firewalls or NATs and for the lack of routing information at the

source. When peer A wants to send a message to peer B, it firstly looks into

its cache for routing information; if nothing were found it would leverage on its

relay peer asking it for routing information.

More details about rendezvous and relay peers are provided in section 4.6.

4.4.2 Peer Groups

Peer Groups are sets of peers all implementing a common set of services, the

Peer Group Services. Each peer group is given a unique identifier, a Peer Group

ID. Groups are arranged in a hierarchical way, with each group having a single

parent. Peer groups have to implement a set of core services useful for granting

peers some basic functionality.

The JXTAnthill Project 46

� Discovery Service. This service is used by peers in order to find out

resources of any kind: a resource can be a peer, a peer group, a structured

document, or whatever.
� Membership Service. Once a peer has discovered a new group and wishes

to join it, the membership service will manage this task accepting or refusing

the applying peer according to the implemented membership service’s policy.
� Access Service. Peers belonging to the same group can interact with each

other through higher level services. The access service is in charge of

verifying one peer’s right for making requests to another one before accepting

to accomplish the requested task.
� Pipe Service. This is one of the most important services since it deals with

the standard communication means provided by the JXTA Technology.
� Resolver Service. This service is used to send generic query requests to

other peers. It can be extended in order to meet developer’s specific needs.
� Monitoring Service. This service is used to monitor peers’ state.

It is important to recall that it is not necessary for a peer group to implement all

the above services, but only the ones really needed.

4.4.3 JXTA Pipes

JXTA pipes are virtual communication channels used by peers in order to

interact with each other. Peers do not need to be directly connected for

exchanging messages, since intermediary nodes may be used for routing

messages even through firewalls. Pipes have been designed to be

asynchronous and unidirectional since they are meant to be the starting point for

building more sophisticated communication mechanisms. Each pipe consists of

two pipe endpoints, which are referred to as input pipe and output pipe.

Informally a pipe endpoint corresponds to a peer’s network interface that can be

used for sending and/or receiving messages.

The JXTAnthill Project 47

We have three types of pipes in the current platform implementation:

� Point−to−Point Pipe. This pipe is a unidirectional asynchronous

communication channel connecting only two peers.
� Propagate Pipe. A propagate pipe is still unidirectional and asynchronous but

implements a one−to−many communication pattern.
� Secure Unicast Pipe. A secure pipe is implemented upon TLS (Transport

Layer Security) Version 1 in order to guarantee reliable private connections.

Figure 4.3 Examples of point to point and propagate JXTA pipes [PJJFPG].

4.4.4 Advertisements

As stated before, peers and peer groups need a way for publishing their own

existence in the JXTA network as well as to advertise the presence of the

resources they wish to grant to other nodes belonging to their same group. Even

in order to join a given group, a generic peer should be enabled to first find it out.

That is why every resource in the JXTA network is represented through an

advertisement. In pursuit of interoperability, heterogeneous resources are

advertised using language neutral meta−data structures, represented by XML

documents. XML guarantees interoperability since today on every platform are

available libraries for manipulating XML documents. When publishing each

advertisement a default life time is given to it, if none is specified. Once the

The JXTAnthill Project 48

advertisement’s life time expires, it can be republished for making the resource

still available to other peers. The platform defines nine basic advertisements:

� Peer Advertisement. This document is aimed at advertising the existence of

a peer in the JXTA network. A peer advertisement holds configuration

information about a peer along with its name, its own JXTAID, its group

JXTAID, a logical description of the peer and the set of implemented services.

<xs: compl exType name=" PA" >
 <xs: el ement name=" name" t ype=" xs: st r i ng" mi nOccur s=" 0" / >
 <xs: el ement name=" PI D" t ype=" JXTAI D" / >
 <xs: el ement name=" GI D" t ype=" JXTAI D" / >
 <xs: el ement name=" Desc" t ype=" xs: anyType" mi nOccur s=" 0" / >
 <xs: el ement name=" Dbg" t ype=" xs: t oken" mi nOccur s=" 0" / >
 <xs: el ement name=" Svc" t ype=" j xt a: ser vi cePar ams" mi nOccur s=" 0"

 maxOccur s=" unbounded" / >
</ xs: compl exType>
<xs: si mpl eType name=" JXTAI D" >
 <xs: r est r i ct i on base=" xs: anyURI " >
 <pat t er n val ue=" ([uU] [r R] [nN] : [j J] [xX] [t T] [aA] :) +\ −+" / >
 </ xs: r est r i ct i on>
</ xs: si mpl eType>
<xs: compl exType name=" ser vi cePar am" >
 <xs: el ement name=" MCI D" t ype=" JXTAI D" / >
 <xs: el ement name=" Par m" t ype=" xs: anyType" / >
</ xs: compl exType>

Figure 4.4 Peer Advertisement Schema [PJJFPG]

� Peer Group Advertisement. This document advertises the existence of a

peer group. It holds the following information: the group ID (a JXTAID), the

module specification ID (MSID, a JXTAID identifying the module responsible

for the peer group implementation), the logical name of the peer group, its

logical description, and a potentially empty set of implemented services. Given

the MSID a peer might locate a Module Implementation Advertisement or a

Module Specification Advertisement, documents that descibe one of the

potentially multiple implementations and the network behavior of the same

service, respectively (see the following sections for further details).

The JXTAnthill Project 49

<xs: compl exType name=" PGA" >
 <xs: el ement name=" GI D" t ype=" JXTAI D" / >
 <xs: el ement name=" MSI D" t ype=" JXTAI D" / >
 <xs: el ement name=" name" t ype=" xs: st r i ng" mi nOccur s=" 0" / >
 <xs: el ement name=" Desc" t ype=" xs: anyType" mi n0ccur s=" 0" / >
 <xs: el ement name=" Svc" t ype=" j xt a: ser vi cePar am" mi nOccur s=" 0"

 maxOccur s=" unbounded" / >
</ xs: compl exType>

Figure 4.5 Peer Group Advertisement Schema [PJJFPG]

� Module Class Advertisement. A module class advertisement is only meant

for providing a description of what a given Module Class ID stands for, and

could be useful for humans willing to create different implementations of an

abstract service. The JXTA platform does not require to create and publish

such an advertisement.

<xs: compl exType name=" MCA" >
 <xs: el ement name=" MCI D" t ype=" JXTAI D" / >
 <xs: el ement name=" name" t ype=" xs: st r i ng" mi nOccur s=" 0" / >
 <xs: el ement name=" Desc" t ype=" xs: anyType" mi n0ccur s=" 0" / >
</ xs: compl exType>

Figure 4.6 Module Class Advertisement Schema [PJJFPG]

� Module Specification Advertisement. A module specification advertisement

is used for clarifying what a given MSID stands for and which is the network

behavior of a service. In case that multiple different implementations of the

same service had to be interoperable, they should have the same module

specification ID (MSID). A MSA is also used to define how the service should

be invoked: simply using the service’s API (locally), through a JXTA pipe, or

through a proxy. All these information are encapsulated in the module

specification advertisement (MSA).

The JXTAnthill Project 50

<xs: compl exType name=" MSA" >
 <xs: el ement name=" MSI D" t ype=" JXTAI D" / >
 <xs: el ement name=" name" t ype=" xs: st r i ng" mi nOccur s=" 0" / >
 <xs: el ement name=" Cr t r " t ype=" xs: st r i ng" mi nOccur s=" 0" / >
 <xs: el ement name=" SURI " t ype=" xs: anyURI " mi n0ccur s=" 0" / >
 <xs: el ement name=" Ver s" t ype=" xs: st r i ng" / >
 <xs: el ement name=" Desc" t ype=" xs: anyType" mi n0ccur s=" 0" / >
 <xs: el ement name=" Par m" t ype=" xs: anyType" mi n0ccur s=" 0" / >
 <xs: el emen name=" Pi peAdver t i sement "

 t ype=" j xt a: Pi peAdver t i sement " mi n0ccur s=" 0" / >
 <xs: el ement name=" Pr oxy" t ype=" xs: anyURI " mi n0ccur s=" 0" / >
 <xs: el ement name=" Aut h" t ype=" JXTAI D" mi n0ccur s=" 0" / >
</ xs: compl exType>

Figure 4.7 Module Specification Advertisement Schema [PJJFPG]

� Module Implementation Advertisement. Since a service defined by a MSA

might actually have different implementations, the concept of Module

Implementation Advertisement (MIA) is provided for describing one of those

particular implementation. It contains information such as the logical name of

the service, the MSID it refers to, a compatibility tag, a tag identifying the code

in charge of providing the service (i.e. in the Java implementation this will be a

valid class name), an URI for downloading the implementation code, a tag

stating who the service provider is and a set of arbitrary parameters.

<xs: compl exType name=" MI A" >
 <xs: el ement name=" MSI D" t ype=" JXTAI D" / >
 <xs: el ement name=" Comp" t ype=" xs: anyType" / >
 <xs: el ement name=" Code" t ype=" xs: anyType" / >
 <xs: el ement name=" PURI " t ype=" xs: anyURI " mi n0ccur s=" 0" / >
 <xs: el ement name=" Pr ov" t ype=" st r i ng" mi n0ccur s=" 0" / >
 <xs: el ement name=" Desc" t ype=" xs: anyType" mi n0ccur s=" 0" / >
 <xs: el ement name=" Par m" t ype=" xs: anyType" mi n0ccur s=" 0" / >
</ xs: compl exType>

Figure 4.8 Module Implementation Advertisement Schema [PJJFPG]

� Pipe Advertisement. A pipe advertisement is an XML document describing a

JXTA pipe. It is used by peers in order to dynamically bind their own

endpoints before starting to exchange messages. The pipe advertisement

points out the logical name of the pipe, its type (point to point, propagate,

secure) and its own JXTAID.

The JXTAnthill Project 51

<xs: compl exType name=" PA" >
 <xs: el ement name=" I d" t ype=" JXTAI D" / >
 <xs: el ement name=" Type" t ype=" st r i ng" / >
 <xs: el ement name=" Name" t ype=" st r i ng" / >
</ xs: compl exType>

Figure 4.9 Pipe Advertisement Schema [PJJFPG]

4.5 JXTA IDs

In the former section, JXTA identifiers have been mentioned without giving a

strict definition of what they really are. JXTA identifiers are represented as URNs

(Uniform Resource Names). URNs are a special form of URI “... intended to

serve as persistent, location−independent resource identifiers”. JXTA identifiers

are used in order to univocally refer to resources in the JXTA network, so they

identify peers, peer groups, pipes, module classes, module specifications and

contents. A generic JXTAID URN representation has two main components:

� The JXTA Name Space. This field is equal to the string j x t a and every

JXTAID must belong to this name space.
� The JXTAID. This component can be even further divided into two sub−fields:

the JXTAID format, and the unique ID.
� The JXTA Format. JXTA identifiers have been designed to allow the usage

of already existing identifications schemes. That is why different JXTA IDs

formats are necessary. According to a given format it can be argued how

the ID has been generated and extra information could be extracted from it.
� The JXTA Unique ID. This is a string uniquely identifying the JXTA

resource.

In figure 4.10 there is the JXTAID format specification based on the ABNF

syntax [IETF RFC 2234].

The JXTAnthill Project 52

<JXTAURN> : : = " ur n: " <JXTANS> " : " <JXTAI DVAL>

<JXTANS> : : = " j xt a"

<JXTAI DVAL> : : = <JXTAFMT> " −" <JXTAI DUNI Q>

<JXTAFMT> : : = 1 * <URN char s>

<JXTAI DUNI Q> : : = 1 * <URN char s>

<URN char s> : : = <t r ans> | " %" <hex> <hex>

<t r ans> : : = <upper > | <l ower > | <number > | <ot her > |
 <r eser ved>

<upper > : : = " A" | " B" | " C" | " D" | " E" | " F" | " G" | " H" |
 " I " | " J" | " K" | " L" | " M" | " N" | " O" | " P" |
 " Q" | " R" | " S" | " T" | " U" | " V" | " W" | " X" |
 " Y" | " Z"

<l ower > : : = " a" | " b" | " c" | " d" | " e" | " f " | " g" | " h" |
 " i " | " j " | " k" | " l " | " m" | " n" | " o" | " p" |
 " q" | " r " | " s" | " t " | " u" | " v" | " w" | " x" |
 " y" | " z"

<hex> : : = <number > | " A" | " B" | " C" | " D" | " E" | " F" |
 " a" | " b" | " c" | " d" | " e" | " f "

<number > : : = " 0" | " 1" | " 2" | " 3" | " 4" | " 5" | " 6" | " 7" |
 " 8" | " 9"

<ot her > : : = " (" | ") " | " +" | " , " | " −" | " . " |
 " : " | " =" | " @" | " ; " | " $" |
 " _" | " ! " | " * " | " ’ "

<r eser ved> : : = " %" | " / " | " ?" | " #"

Figure 4.10 JXTAIDs syntax [PJJFPG]

4.5.1 JXTA IDs properties

Every JXTA ID, regardless of format or type, has the following properties:

� Unambiguous. It must be a complete reference to the resource.
� Relatively Unique. It must refer to a single resource.
� Canonical. References to the same resource should encode the same JXTA

ID. This enables the comparing of IDs to determine if they refer to the same

resource or not.
� Opacity. In their URN presentation JXTA IDs are assumed to be opaque. The

The JXTAnthill Project 53

context of an ID within a protocol message generally is sufficient to establish

its type. A JXTA binding may be able to interpret an ID if it supports the ID

Format. Generally, only the immediate participants in a JXTA protocol need to

understand the contents of a JXTA ID.

4.6 JXTA Protocols

As stated at the beginning of this chapter, JXTA achieves interoperability and

platform independence merely defining itself as a set of protocols, and using

XML for advertising resources. The six protocols building the JXTA core platform

are:

� Peer Discovery Protocol (PDP).
� Peer Resolver Protocol (PRP).
� Peer Information Protocol (PIP).
� Pipe Binding Protocol (PBP).
� Endpoint Routing Protocol (ERP).
� Rendezvous Protocol (RVP).

Figure 4.11 JXTA protocols layering [PJJFPG]

The JXTAnthill Project 54

Peer Resolver Protocol. This is one of the most important protocols in the

whole platform, since it represents the layer over which PDP, PIP and PBP are

based. The peer resolver protocol defines a generic query/response mechanism

suitable for building higher level specific protocols. In order to define other

protocols based upon the PRP it is necessary to define two new request and

response schema starting from the ones depicted in figures 4.12 and 4.13.

<xs: el ement name=" Resol ver Quer y" t ype=" j xt a: Resol ver Quer y" / >

<xs: compl exType name=" Resol ver Quer y" >
 <xs: el ement name=" Cr edent i al " t ype=" xs: anyType" mi nOccur s=" 0" / >
 <xs: el ement name=" Sr cPeer I D" t ype=" xs: anyURI " / >
 <! −− Thi s coul d be ext ended wi t h a pat t er n r est r i ct i on −−>
 <xs: el ement name=" Handl er Name" t ype=" xs: st r i ng" / >
 <xs: el ement name=" Quer yI D" t ype=" xs: st r i ng" / >
 <xs: el ement name=" Quer y" t ype=" xs: anyType" / >
</ xs: compl exType>

Figure 4.12 Peer Resolver Query Schema [PJJFPG]

<xs: el ement name=" Resol ver Response" t ype=" Resol ver Response" / >
<xs: compl exType name=" Resol ver Response" >
 <xs: el ement name=" Cr edent i al " t ype=" xs: anyType" mi nOccur s=" 0" / >
 <xs: el ement name=" Handl er Name" t ype=" xs: st r i ng" / >
 <xs: el ement name=" Quer yI D" t ype=" xs: st r i ng" / >
 <xs: el ement name=" Response" t ype=" xs: anyType" / >
</ xs: compl exType>

Figure 4.13 Peer Resolver Response Schema [PJJFPG]

Peer Discovery Protocol. This is the standard protocol used by peers for

discovering resources scattered around the JXTA network. It is based on the

PRP and so defines both a request message format and a reply message

format. Rendezvous peers are fundamental to this protocol, since they are in

charge of forwarding requests to other known peers. Figure 4.11 depicts a

potential scenario where peer A only knows about the existence of the

rendezvous peer R1, and so sends its queries to it. Then R1 will forward the

same requests both to other simple peers and to other known rendezvous peers

(remember that simple peers are not allowed to forward incoming requests, they

can just try to satisfy them).

The JXTAnthill Project 55

A TTL and a maximum amount of desired replies is assigned to each request.

The service is classified as being a best effort service: nothing is granted a priori.

 Figure 4.14 PDP example [PJJFPG]

<xs: el ement name=" Di scover yQuer y" t ype=" j xt a: Di scover yQuer y" / >
<xs: compl exType name=" Di scover yQuer y" >

<! −− t hi s shoul d be an enumer at i on −−>
<xs: el ement name=" Type" t ype=" xs: st r i ng" / >
<xs: el ement name=" Thr eshol d" t ype=" xs: unsi gnedI nt "
 mi nOccur s=" 0" / >
<xs: el ement name=" Peer Adv" t ype=" j xt a: PA" mi nOccur s=" 0" / >
<xs: el ement name=" At t r " t ype=" xs: st r i ng" mi nOccur s=" 0" / >
<xs: el ement name=" Val ue" t ype=" xs: st r i ng" mi nOccur s=" 0" / >

</ xs: compl exType>

Figure 4.15 Discovery Query Message schema [PJJFPG]

<xs: el ement name=" Di scover yResponse" t ype=" j xt a: Di scover yResponse" / >
<xs: compl exType name=" Di scover yResponse" >

<! −− t hi s shoul d be an enumer at i on −−>
<xs: el ement name=" Type" t ype=" xs: st r i ng" / >
<xs: el ement name=" Count " t ype=" xs: unsi gnedI nt " mi nOccur s=" 0" / >
<xs: el ement name=" Peer Adv" t ype=" xs: anyType" mi nOccur s=" 0" >

<xs: at t r i but e name=" Expi r at i on" t ype=" xs: unsi gnedLong" / >
</ xs: el ement >
<xs: el ement name=" At t r " t ype=" xs: st r i ng" mi nOccur s=" 0" / >
<xs: el ement name=" Val ue" t ype=" xs: st r i ng" mi nOccur s=" 0" / >
<xs: el ement name=" Response" t ype=" xs: anyType"

 maxOccur s=" unbounded" >
<xs: at t r i but e name=" Expi r at i on" t ype=" xs: unsi gnedLong" / >

</ xs: el ement >
</ xs: compl exType>

Figure 4.16 Discovery Response Message schema [PJJFPG]

The JXTAnthill Project 56

Peer Information Protocol. Once a peer has been discovered through the PDP,

it might be monitored using the peer information protocol. This is a PRP based

query/reply protocol, which defines both a query message format and a reply

message format.

<xs: el ement name=" Peer I nf oResponse" t ype=" j xt a: Peer I nf oResponse" / >
<xs: compl exType name=" Peer I nf oResponse" >
 <xs: el ement name=" sour cePi d" t ype=" xs: anyURI " / >
 <xs: el ement name=" t ar get Pi d" t ype=" xs: anyURI " / >
 <xs: el ement name=" upt i me" t ype=" xs: unsi gnedLong" mi nOccur s=" 0" / >
 <xs: el ement name=" t i mest amp" t ype=" xs: unsi gnedLong"

mi nOccur s=" 0" / >
 <xs: el ement name=" r esponse" t ype=" xs: anyType" mi nOccur s=" 0" / >
 <xs: el ement name=" t r af f i c" t ype=" j xt a: pi pt r af f i c" mi nOccur s=" 0" / >
</ xs: compl exType>

<xs: compl exType name=" pi pt r af f i c" >
 <xs: el ement name=" l ast I ncomi ngMessageAt " t ype=" xs: unsi gnedLong
 mi nOccur s=" 0" / >

<xs: el ement name=" l ast Out goi ngMessageAt " t ype=" xs: unsi gnedLong"
mi nOccur s=" 0" / >

 <xs: el ement name=" i n" t ype=" j xt a: pi pt r af f i c i nf o" mi nOccur s=" 0" / >
 <xs: el ement name=" out " t ype=" j xt a: pi pt r af f i c i nf o"

mi nOccur s=" 0" / >
</ xs: compl exType>

<xs: compl exType name=" pi pt r af f i c i nf o"

<xs: el ement name=" t r anspor t " ype=" xs: unsi gnedLong"
maxOccur s=" unbounded" >

<xs: at t r i but e name=" endpt addr " t ype=" xs: anyURI " / >
</ xs: el ement >

</ xs: compl exType>

<xs: el ement name=" Peer I nf oQuer yMessage"
t ype=" j xt a: Peer I nf oQuer yMessage" / >

<xs: compl exType name=" Peer I nf oQuer yMessage" >
<xs: el ement name=" sour cePi d" t ype=" xs: anyURI " / >
<xs: el ement name=" t ar get Pi d" t ype=" xs: anyURI " / >
<xs: el ement name=" r equest " t ype=" xs: anyType" mi nOccur s=" 0" / >

</ xs: compl exType>

Figure 4.17 Peer Information Protocol request and reply message schema [PJJFPG]

Pipe Binding Protocol. JXTA pipes are virtual communication channels which

can be dynamically bound to a peer at runtime simply providing a pipe

advertisement. Roughly speaking the pipe binding protocol is in charge of finding

a pipe endpoint bound to the same pipe advertisement (this is an input−pipe). If

such an endpoint was found, the connection would be established using the

The JXTAnthill Project 57

most suitable protocol available to both of the peers. The query message may

ask only for fresh information (not read from cache), or it may specify a particular

peer ID meaning that just that particular peer is allowed to answer.

Endpoint Routing Protocol. Since it may happen that a peer does not know all

the necessary information for routing a message to the desired destination peer,

or the destination peer might be behind a firewall or a NAT, the JXTA project

envisages the existence of special peers able to handle all these scenarios: the

relay peers (see former sections for details). Peers use the endpoint routing

protocol in order to interact with relay peers. If a peer is not able to find a route to

another node in the network, it queries its own relay peer for a possible path (just

a sequence of hops). If the relay is not able to provide a reply with its local

information, it forwards the request to other known relay peers, if available. Once

the requesting peer has obtained the desired information it will send its message

which will be routed following an adaptive source routing policy. In other words

the source peer specifies the complete sequence of hops its message should

follow, but should the network topology change in the meantime, the routing

nodes would perform an attempt to dynamically find out a new available route.

The whole process is limited by the TTL associated with the message. Even the

endpoint routing protocol is classifiable as a best effort service. In figure 4.18 is

depicted a possible interaction.

Figure 4.18 ERP example with a relay peer routing messages through a firewall [PJJFPG]

The JXTAnthill Project 58

<?xml ver si on=" 1. 0" encodi ng=" UTF−8" ?>
<j xt a: Endpoi nt Rout er Quer y>
 <Cr edent i al > cr edent i al </ Cr edent i al >
 <Dest > peer i d of t he dest i nat i on </ Dest >
 <Cached>
 t r ue: i f t he r epl y can be a cached r epl y
 f al se: i f t he r epl y must not come f r om a cache
 </ Cached>
</ j xt a: Endpoi nt Rout er Quer y>

Figure 4.19 ERP route query message schema [PJJFPG]

<?xml ver si on=" 1. 0" encodi ng=" UTF−8" ?>
<j xt a: Endpoi nt Rout er Answer >
 <Cr edent i al > cr edent i al </ Cr edent i al >
 <Dest > peer i d of t he dest i nat i on </ Dest >
 <Rout i ngPeer >
 Peer I D of t he r out er t hat knows a r out e t o Dest Peer
 </ Rout i ngPeer >
 <Rout i ngPeer Adv>
 Adver t i sement of t he r out i ng peer
 </ Rout i ngPeer Adv>
 <Gat eway> or der ed sequence of gat eway </ Gat eway>
 < >
 <Gat eway> or der ed sequence of gat eway </ Gat eway>
</ Endpoi nt Rout er Answer >

Figure 4.20 ERP route response message schema [PJJFPG]

Rendezvous Protocol. In the former examples we have seen how important is

propagating messages in the JXTA network to involve as many peers as

possible in a generic task. The rendezvous protocol is meant for this purpose: it

is in charge of propagating messages through the network taking into account

issues such as TTL handling, duplication, and loopback detection.

So what we can argue now is that all the core protocols are based on a

request/reply pattern, connections among peers are not meant to be persistent,

the default routing algorithm is inherently distributed and truly adaptive making it

useful even in highly dynamic and ad−hoc networks. JXTA peers are not

required to implement all the above protocols, but only the ones they really need,

and if desired they can be replaced by other implementation specific protocols,

for example to provide different qualities of service (QoS).

The JXTAnthill Project 59

4.7 Conclusions

Project JXTA has been devised in order to cope with the absence of a network

programming platform specifically designed for peer−to−peer applications

development and deployment. Project JXTA main targets are:

� Interoperability. Any P2P system built with JXTA can talk to each other.
� Platform Independence. JXTA can be implemented with any programming

language and run on any software and hardware platform.
� Ubiquity. JXTA can be deployed on any device with a digital heartbeat.

In pursuit of interoperability JXTA has been merely defined as a set of six

protocols each of them meant for a particular usage: JXTA includes protocols for

the discovering and publishing of resources, for monitoring peers and for routing

issues. Fundamental to interoperability is the usage of XML: JXTA resources are

published through XML documents which can later on be retrieved by other

peers. As shown in figure 4.21, the Project JXTA protocols establish a virtual

network on top of existing real networks, hiding their physical topologies.

Figure 4.21 JXTA Virtual Network

The JXTAnthill Project 60

5 The Anthill Project

5.1 Introduction

In the previous three chapters we have been investigating a set of concepts

fundamental to the development of what this chapter introduces: the Anthill

Project. Running over these topics, they were concerned with complex adaptive

systems, peer−to−peer computing and the JXTA Technology. Complex adaptive

systems, based on autonomous agents, are important due to their property of

exposing emergent behaviors: the system, according to the steps performed by

the interacting agents, will expose a behavior not foreseeable simply knowing

the behavior of the system’s basic components. The most relevant thing to

notice it that there is no explicit coordination among agents, and that even few

changes in the way they behave can lead to deeply different global behaviors.

Our interest in the peer−to−peer distributed computing paradigm is due to the

need to find out and adopt a purely decentralized solution for developing and

deploying new distributed applications able to overcome the extents today’s

systems expose, gaining in performance and reliability. Then we have introduced

the JXTA Technology since it can be thought as being the only framework meant

for developing and deploying pure peer−to−peer systems guaranteeing

interoperability and portability, nowadays. All these topics are brought together

by a common idea: easily solve complex problems in a purely decentralized way.

This is what the Anthill Project is about and aims to. Anthill is a framework for

development, testing and deployment of peer−to−peer systems based on the

multi−agent system (MAS) paradigm. Since one of the most important examples

of complex adaptive systems based on MAS is the Virtual Ants System (see

chapter 2), Anthill is inspired by concepts and ideas borrowed from such a

system. An Anthill system can be thought as a collection of nodes, the nests,

The JXTAnthill Project 61

connected together in a network, the Anthill network. The autonomous agents

travelling through the web of nests are called ants. An Anthill system is a peer−

to−peer system that provides its users with a customizable set of services.

Developers are allowed to implement an Anthill system for content sharing

purposes, or for distributing heavily CPU bound computations among a wide set

of machines or whatever. The Anthill Project follows a micro−kernel like

approach: a set of basic services, such as communication mechanisms between

nodes, discovering on new nests, storage management and so on, are provided

by the Anthill infrastructure, while the real high−level services are implemented

by ants. The service logic resides in the ants’ algorithms, with the enormous

advantage that implementing and deploying a new service is merely

accomplished by devising new ant species that will be subsequently plugged into

the Anthill platform. Along with the run−time environment, useful for executing

real Anthill−based applications, an Anthill Project implementation comes with a

simulation environment as well, whose API does not differ from the one exposed

by the run−time environment, thus simplifying the process which goes from

development to deployment. The Anthill Project goes even further, adding

evolutionary computing techniques such as genetic algorithms. During off−line

simulations ant species algorithms can be evaluated, compared, and even mixed

in order to obtain new better ant species. For these purposes ants are

characterized by a set of configuration parameters representing the ant’s genetic

code: mixing these parameters we can derive new ant species exposing

completely new behaviours.

The JXTAnthill Project 62

5.2 The Anthill Project’s main components: Nests & Ant Species

5.2.1 Anthill Nests

As stated in the former section the Anthill key constituents are nests and ant

species. An Anthill nest is a middleware in charge of granting a set of core

services that ants will use while performing their tasks. These services range

from generic storage management, to management of routing data structures on

behalf of ants and communication support.

Figure 5.1 Anthill Nest’s logical structure [BMM−09−01]

In figure 5.1 is depicted the logical structure of an Anthill nest. It is mainly

composed by:

� A set of Storages.
� An Ant Scheduler.
� A Communication Layer.

The JXTAnthill Project 63

Storage. Basically three types of storages are provided by an Anthill Nest

implementation, namely: a document storage, an URL storage, a routing

storage. A document storage is used for managing persistent resources,

possibly shared among all the active nests in the Anthill network. It consequently

contains potentially heterogeneous resources locally available to the Anthill nest.

On the other side an URL storage handles a set of references to remotely stored

resources. The most interesting component is the routing storage. These are

data structures laid by ants when visiting an Anthill nest, that store routing

information useful to other ants belonging to the same species. There are no

constrains concerning what an ant−species routing data structure should be.

This is possible since nests are only in charge of storing these resources, but are

not required to be able to handle them: this is up to ants. This implies that there

will be different routing policies for each ant species acting in the Anthill

environment.

Ant Scheduler. Besides providing basic services involving communication and

security, an Anthill nest has to let received ants execute their own tasks locally.

In order to do this a nest has to provide an ant scheduler in charge of

multiplexing local resources among the received ants according to some policy.

The Anthill specification does not impose any specific way this task should be

accomplished, living all the implementation details up to developers.

Communication Layer. Anthill nests are even responsible to grant ants a way

for moving from one node to another through the Anthill network. This service,

we refer to as the Anthill GateService, is the only compulsory network service

every Anthill binding is required to provide. Other network services may then be

added according to specific developers’ needs.

Upon Anthill nests, are based high−level applications that represent the local

interface between the nest’s user and the P2P network [BMM−09−01]. High−

The JXTAnthill Project 64

level applications interact with the Anthill infrastructure performing requests and

listening for replies. Requests are handled by nest instances. What a nest does

is selecting the most suitable ant species for satisfying the issued request. Then

one or more ants are created and scheduled for local execution.

5.2.2 Anthill Ant Species

The Anthill Project lets developers implement high level services devising new

ant species. Each ant species may be defined by an interface giving an high

level description of what the ant is meant for. Subsequently, different

implementations of the same service (ant species) are expected. Anthill

compatible ant species are obviously required to use the Anthill API for

interacting with the hosting nests. Recall that both the run−time environment and

the simulation environment expose the same API. This API is used by ants for

accessing resource storages, routing data structures, and network services

provided by Anthill nests. Ants are executed locally to a nest in a sand box for

security reasons. This way ants access to local resources can be controlled and

limited as desired.

5.3 The Anthill Project Evolutionary Framework

As previously stated, the Anthill Project adopts evolutionary techniques for

improving various characteristics of a P2P system [BMM−09−01]. Each Anthill

ant species can be characterized by a unique chromosome that defines the ant

species’ unique behavior in the Anthill environment. An ant species chromosome

can be actually represented by a simple set of parameters that addict the ant’s

algorithm execution. For example we can parameterize an ant algorithm

introducing an exploration probability parameter. This parameter should

The JXTAnthill Project 65

influence the “willing” of the virtual ant to test new paths while travelling towards

a resource, regardless of what is reputed to be the best path known in the

network. Acting over this parameter different behaviors can be experienced, and

the best ant can be selected according to some criteria. For example, if we were

interested in the minimization of the total path length traversed by the ants while

searching resources, we could test different ant species characterized by

chromosomes differing in the exploration parameter, and observe which one

better fits our requirements. These techniques could be applied even in the run−

time environment, enabling nests to rate different ant species on the basis of a

given criterion.

5.4 The Anthill Project Three Layers Structure

Figure 5.2 The Anthill Project Structure [BMM−09−01]

The Anthill Project is structured as depicted in Figure 5.2. In the middle there is

the Anthill Project infrastructure, represented by the Anthill nest implementation.

The JXTAnthill Project 66

On top of the Anthill infrastructure higher−level applications can be layered.

These are mere interfaces between the nest’s users and the real P2P services

implemented by ants. There should not be direct interaction between high−level

applications and ants: nests have to be the means by which requests are

mapped to ants and responses are returned to users.

Different bindings, or implementations, of the Anthill Project are admitted. The

one proposed along with this thesis is based on the formerly introduced JXTA

Technology. The following chapters respectively deal with the JXTAnthill Project

architecture and the JXTAnthill Project implementation details. The last chapter

exposes some preliminary simulation results related to an experimental ant

species implementing a file−sharing service.

The JXTAnthill Project 67

6 JXTAnthill: JXTA based Anthill binding

6.1 JXTAnthill

As stated in the previous chapter the Anthill Project defines a set of interfaces to

be implemented in order to have a working “binding” of the project. This is an

extremely useful and interesting approach since it let us devise different Anthill

implementations each one based on the most appropriate technology. At the

moment of writing this thesis the most interesting platform for developing peer−

to−peer distributed systems surely was represented by the formerly introduced

JXTA Project. That is due to the set of facilities it exposes: this leads to a rapid

development of a P2P system, bereaving programmers of the burden of solving

non−trivial problems such as peer and resource discovery, communication

primitives, firewall handling and other related issues, in a purely decentralized

environment. This justifies the choice of JXTA as the basis for our Anthill

implementation. As previously seen, JXTA offers a set of services while not

imposing developers to use them all. This is why the JXTAnthill implementation

relies on a strict subset of the JXTA core services, namely: the Peer Discovery

Protocol (PDP), the Pipe Binding Protocol (PBP) and the Rendezvous Protocol

(RVP) [PJJFPG]. Before going deeper into the details concerning the integration

of these protocols with the Anthill Project, it is necessary to take a look at the

architectural design of JXTAnthill.

6.2 JXTAnthill: Project’s Architecture

The Anthill Project is composed by a set of hierarchically organized packages,

namely:

The JXTAnthill Project 68

� anthill. In this package are located sub packages and interfaces that should

be implemented in order to have an Anthill Project binding.
� ants. This is the default package where ant species implementations should

be located.
� antsim. This package contains the simulation environment implementation.

This implementation has to be compliant with the specifications given by the

set of interfaces located in the anthill package and in its sub packages.
� jxtaimpl. This is the JXTA based Anthill Project implementation proposed in

this thesis. Obviously it has to be compliant with the interfaces defined in the

packages named anthill and its sub−packages.

Figure 6.1 Detail of the Anthill Project first level UML Class Diagram

The JXTAnthill Project 69

For our purposes, the only packages of interest are anthill, jxtaimpl and ants. Let

us now analyse each of them separately.

6.3 Package anthill

As one can see in Figure 6.1, this package contains a set of first level interfaces

plus a set of other sub packages as well. The interfaces are:

� anthill.AntView. This interface defines the only operations an ant can

perform once reached a nest. For security concerns the ant is not allowed to

directly interact with the hosting nest, but with an instance of a class

implementing the anthill.AntView interface. This class will just map calls over

the appropriate Nest implementation.
� anthill.Ant. This interface defines the default set of methods a new ant

species has to provide.
� anthill.Resource. Anthill resource implementations must implement this

interface.
� anthill.AntId. Each ant travelling through the Anthill network has to be

uniquely identifiable, and implementation identifiers must implement this

interface.
� anthill.AntFactory. A classical factory−based design pattern is used in order

to obtain ants as needed. So there must be a factory for each ant species

implementation.
� anthill.RequestId. Requests have to be uniquely identifiable, and

implementation identifiers have to be compliant with this interface.
� anthill.NestId. Each nest in the Anthill network is unique and uniquely

identified by its own NestId implementation.

The JXTAnthill Project 70

All these interfaces are fundamental to every implementation. The anthill

package encloses many other sub packages, but the only ones relevant to our

discussion are: anthill.nest and anthill.storage.

6.4 Package anthill.nest

Figure 6.2 anthill.nest UML Class Diagram

The anthill.nest package contains the set of interfaces each nest implementation

has to implement. Them all are noteworthy for the prosecution of our discussion:

� anthill.nest.Nest. The Nest interface defines all the basic functions a generic

Anthill nest should provide. They are mainly related to storage management,

requests handling and neighbours management.
� anthill.nest.Gate. The Gate interface has to be implemented by those

classes in charge of handling all the communication related issues. It

represents the means by which ants can move from one nest to another in the

Anthill network.

The JXTAnthill Project 71

� anthill.nest.AntListener. This interface has to be implemented by those

classes willing to receive ants from remote nests.
� anthill.nest.RequestSet. This interface describes a table for mapping

requests to listeners.
� anthill.nest.ResponseListener. This interface has to be implemented by

those classes willing to receive responses to previously issued requests.
� anthill.nest.Manager. The Manager interface has to be implemented by

classes in charge of scheduling and executing ants locally.
� anthill.nest.Trail. This interface should be used in order to implement classes

useful for storing associations between ant identifiers and the nest they come

from.

6.5 Package anthill.storage

Figure 6.3 anthill.storage UML Class Diagram

The JXTAnthill Project 72

What the anthill.storage package defines is a set of general purpose storage

interfaces to be implemented by real applications. Three of these interfaces are

hierarchically organized, and these are the ones we are interested in:

� anthill.Storage. This is an empty interface that must be implemented by all

storages. Furthermore it defines a set of basic identifiers that are used to

distinguish among three basic kinds of storages. An URL storage should be

used in order to store references to documents or resources scattered all

around the Anthill network. A document storage is in charge of managing all

the shared resources locally available to the nest. Last but not least there is

the pheromone storage which could be used by nests in order to manage the

pheromone data structures laid by hosted ants.
� anthill.GenericStorage. This interface extends the former one by adding a

set of facilities a storage implementation should provide. For example there

should be methods meant for adding and removing resources or for collecting

information about the storage usage.
� anthill.QueryStorage. The QueryStorage interface even further extends the

set of tasks a storage should implement by adding a method for obtaining

more then a single resource per query.

Still noteworthy are the two exceptions located in this package, namely the

StorageNotFoundException and the CapacityException. Since in an Anthill

implementation a storage is associated with a given ant species, should an ant

try to use a not already instantiated storage, a StorageNotFoundException is

thrown. The CapacityException is related to the fact that a storage is limited in

size for security reasons.

The JXTAnthill Project 73

6.6 Package jxtaimpl

Figure 6.4−a jxtaimpl package UML Class Diagram

The jxtaimpl package is the JXTA based Anthill implementation presented along

with this thesis. As stated before, just like any other possible Anthill

implementation, jxtaimpl has been fulfilled implementing the set of interfaces

described above.

The JXTAnthill Project 74

In Figures 6.4−a,b,d, is depicted the UML class diagram describing the jxtaimpl

package. Let us first consider Figure 6.4−a. As one can see, three sub packages

are located within the jxtaimpl package, namely: jxtaimpl.storage, jxtaimpl.ids

and jxtaimpl.gui.

� jxtaimpl.storage. This is the storage implementation used along with the

JXTA based Anthill Project binding.
� jxtaimpl.ids. This package contains the classes implementing the identifiers

used along with jxtaimpl.
� jxtaimpl.gui. This package is of minor interest at the moment, since it simply

is a demo application written for testing purposes.

Let us now take into account the implementation classes wrapped in the jxtaimpl

package.

� jxtaimpl.AntView. This class implements the formerly described

anthill.AntView interface. What it does is mainly mapping all of its methods

over the class implementing the anthill.nest.Nest interface.
� jxtaimpl.Manager. This is the anthill.nest.Manager implementation class. As

stated above it is in charge of scheduling the received ants according to the

desired policy. In the JXTA based Anthill implementation, this class is not

concerned with ants execution: this is up to the class named

jxtaimpl.Executor, whose behavior is treated in the implementation chapter.
� jxtaimpl.AnthillPeerWS. This class is in charge of boot strapping an Anthill

Nest by launching the JXTA platform and starting the JXTA enabled

services [PJJFPG] provided with this implementation. As explained in chapter

7, this is accomplished publishing JXTA advertisements for each provided

service. This class is even in charge of instantiating all the other components

of the project, according to the configuration parameters provided by the user

via an XML configuration file (see chapter 7 for details).

The JXTAnthill Project 75

� jxtaimpl.PeerFinder. This interface has to be implemented by those classes

in charge of discovering remote nests via the PDP JXTA protocol [PJJFPG].

As one can notice in Figure 6.4−a, this interface is implemented by the

jxtaimpl.AnthillPeerWS class.
� jxtaimpl.GateServiceAdvPublisher. Once the AnthillPeerWS instance has

published the GateService advertisement, this will have to be periodically

published back (see chapter 7 for details). The

jxtaimpl.GateServiceAdvPublisher class is meant for performing this task.

Figure 6.4−b jxtaimpl package UML Class Diagram

The JXTAnthill Project 76

Let us now consider the classes depicted in the second portion of the jxtaimpl

package class diagram (figure 6.4−b). Firstly we observe three classes

implementing three distinct interfaces located in the package anthill.nest,

namely:

� jxtaimpl.Nest
� jxtaimpl.RequestSet
� jxtaimpl.Trail

Since these classes’ semantic has already been explained, for details please

refer back to section 6.4. The other classes depicted in figure 6.4−b only

characterize the JXTA Anthill implementation and should not be thought as

common to any other Anthill “binding”. These are:

� jxtaimpl.AnthillGroup. This class implements the concept of group. It is

meant for providing references to the needed core−JXTA services, such as

the discovery service and the pipe service [PJTO].
� jxtaimpl.NeighbourManager. While a nest is alive it will periodically try to

find out other peers via the peer discovery protocol (PDP) [PJJFPG]. All the

gathered nest identifiers need to be somehow managed: the

NeighbourManager class is in charge of performing this task.

The classes jxtaimpl.GateServiceReceiver and jxtaimpl.GateServiceBuffer are

treated in the next section.

The JXTAnthill Project 77

6.7 JXTAnthill: JXTA−Enabled Services

Each nest implementation has to provide at least one fundamental service to

ants, the gate service. This service is described by the the Gate interface located

in the anthill.nest package. Beyond this service, different Anthill implementations

might need to extend the spectrum of middle−level services they provide: this is

right what happened with the JXTAnthill implementation. JXTAnthill basically

provides two distinct services. Both of them are classified as JXTA−enabled

services [PJJFPG]. One is meant only for ants, while the other one is only

available to the higher application built on top of JXTAnthill.

� GateService. This is the JXTA−based Gate Service implementation, the only

compulsory service for every Anthill implementation. Four different classes are

involved in providing this JXTA−enabled service, namely:

� jxtaimpl.GateService
� jxtaimpl.GateServiceReceiver
� jxtaimpl.GateServiceBuffer
� jxtaimpl.GateServiceServer

The JXTAnthill GateService service has been shaped using a classical

producer−consumer design pattern. The GateService class is essentially in

charge of receiving foreign ants coming from the network layer. No processing

has to be carried out at this level: once an ant wrapped into an AntDescriptor has

been received it is passed to the class instance in charge of scheduling and

execution issues (the jxtaimpl.Manager). So in JXTAnthill ants are received by

the GateServiceReceiver instance, written into the GateServiceBuffer and read

by the GateServiceServer.

The JXTAnthill Project 78

Figure 6.4−c GateService main components

� DownloadService. In the Anthill Project ants are high−level services built on

top of the Anthill infrastructure. For demonstration purposes this thesis deals

with an ant species designed for building a resource−sharing peer−to−peer

system. In such a scenario it would not be advisable to let ants carry the

resources they have found along with them through the network: think about

what that would lead to if the resource was a very huge file. It would be better

to have ants returning only resource descriptors, and letting the nest decide

whether downloading that resource or not. In pursuit of this idea the

DownloadService has been added to the set of JXTA−enabled services

provided by each JXTAnthill Nest. The DownloadService is composed by

three classes, namely: jxtaimpl.DownloadService, jxtaimpl.DownloadManager,

jxtaimpl.Downloader (see figure 6.4−d). The DownloadService instance is in

charge of instantiating and starting the DownloadManager. This component

will wait for downloading requests originated by remote nests, so it can be

thought as being the server side of the DownloadService. Its counterpart is

the Downloader: should a nest decide to download a resource, it will leverage

over its own Downloader instance in order to accomplish the task. The

sequence of steps involved in an Anthill resource downloading is better

described in the implementation section.

The JXTAnthill Project 79

Figure 6.4−d jxtaimpl package UML Class Diagram

6.8 Package jxtaimpl.storage

Fundamental to the Anthill Project is the concept of storage. As previously

noticed, entities ranging from pheromone to documents and URL references

could all be arranged in a storage. Since the Anthill Project only defines a set of

The JXTAnthill Project 80

interfaces describing what a generic storage should provide (see package

anthill.storage for details), developers are enabled to derive their own

implementations starting from the given guide lines. For our purposes has been

implemented a CMS−based storage [CMS]. CMS (Content Menagement

Service) is a JXTA sub project for content handling and managing. Each content

is associated with a JXTA content advertisement [PJJFPG] describing the

resource itself. In order to retrieve shared documents, or to test the existence of

a given resource, the documentary base can obviously be queried. The

jxtaimpl.storage package consists of three classes, namely: the CmsStorage, the

AnthillResource and the Query class.

� jxtaimpl.storage.CmsStorage. This is the class implementing the CMS−

based resource storage. As one can see, it is an anthill.storage.QueryStorage

implementation class. This class is essentially in charge of managing the set

of resources a nest is willing to share. In order to limit the number of locally

stored resources, a user−defined amount of disk space available to the

storage can be assigned to each CmsStorage instance. Remember that each

ant species is assigned to a distinct storage instance. As stated above,

queries can be issued to a storage: a CmsStorage will accept only queries

instantiating the jxtaimpl.storage.Query class.
� jxtaimpl.storage.Query. Since each resource is described by an

advertisement (a content advertisement), the easiest way for querying the

storage is by using couples shaped this way: [Element−Name, Set of Values].
� Element−Name. A content advertisement is an XML document containing

information about the associated content shared within the peer

group [PJJFPG]. A valid element−name is equal to one of the tags

contained into the given content advertisement.
� Set of Values. This second parameter is simply a sequence of values of

interest for the given element name.

The JXTAnthill Project 81

� jxtaimpl.storage.AnthillResource. Since ants are not allowed to move real

resources from one nest to another, queries to a CmsStorage instance will

only return resource descriptors. An AnthillResource plays this role: it merely

describes what a resource is, highlighting details such as the content’s length,

the resource’s logical description and its name. An AnthillResource contains

as well instructions for remote nests to download the real resource via the

DownloadService.

Figure 6.5 jxtaimpl.storage UML Class Diagram

6.9 Package jxtaimpl.ids

Each Anthill Project implementation has to provide its own identifiers

implementation. Both the AntId and the RequestId extend the GenericId class

reusing this way the same constructor. An AntId is originated starting from a

valid RequestId instance, while a RequestId instance is obtained starting from a

The JXTAnthill Project 82

valid NestId instance. This way having an AntId or a RequestId it is possible to

identify the querying nest. Since JXTAnthill Nests are JXTA peers, the most

useful way for identifying a nest is using its gate service pipe advertisement as a

unique identifier. This is an appropriate choice since pipe advertisements are

already guaranteed to be unique in a JXTA network; furthermore, once such a

nest identifier has been obtained, it can be immediately used for establishing a

connection to the given nest without further processing.

Figure 6.6 jxtaimpl.ids UML Class Diagram

6.10 Package ants

Besides the middle−level services exposed so far, the Anthill Project lets

developers devise new higher level services based on the underlying platform.

No restrictions are imposed about what these services should be meant for: the

only necessary constrain is that all of them have to be shaped as ants. New

The JXTAnthill Project 83

services can be added to the Anthill framework simply implementing new ant

species. Once an ant species has been devised, developers should place the

associated code beneath the ants package. Ant species located in this position

are guaranteed to be executed in a sandbox granting the minimum set of rights

to the code. Theoretically what an ant should be able to do is strictly limited to

interacting with the local Nest instance through the given AntView, nothing else:

ants are treated just like Java Applets. A valid ant implementation should fulfill

the following requirements:

� Must implement the anthill.ant interface.
� Ants have to be instantiated through a class implementing the

anthill.AntFactory interface.

The AntFactory.getAnts() method will return an array of objects implementing the

Ant interface. The number of the returned ants can change from implementation

to implementation. As far as the Ant interface is concerned, the methods

exposed in figure 6.8 have to be provided by every Ant implementation class.

Figure 6.7 anthill.AntFactory interface Figure 6.8 anthill.Ant interface

The JXTAnthill Project 84

7 JXTAnthill: Implementation

7.1 Introduction

While the former chapter has dealt with the JXTAnthill Project design, mainly

treating architectural issues, this one is concerned with some of the JXTAnthill

Project most relevant and noticeable implementation details. In pursuit of this

objective the explanation covers the main tasks performed by a generic

JXTAnthill nest, from its start up process to its interaction with other JXTAnthill

nests.

7.2 JXTAnthill: Nest Configuration

Each Anthill nest is extremely flexible due to the possibility of configuring it

before starting the whole platform, by specifying a number of different

parameters influencing the nest’s behavior. Configuration is achieved through an

XML configuration file. It is advisable to have an XML configuration file for each

Anthill binding. It is not only needed for pointing out nest−specific configuration

parameters, but it lets users decide which Anthill components should be plugged

into the platform at run time. For example, as stated in the former chapter, many

different implementations of one of the Anthill interfaces may be available to a

nest, say the anthill.nest.Manager interface. This is the interface in charge of

handling the ant−scheduling task. Since different implementations will provide

different scheduling policies (round−robin, priority−based, etc.), one might

choose to plug the most well−fitting anthill.nest.Manager implementation class

into the Anthill Platform, according to his/her needs. Obviously, different flexibility

The JXTAnthill Project 85

levels may be experienced among different Anthill bindings: one could provide

users with the ability to control a wide number of details while others might let

users only define the minimum set of parameters needed. Figure 7.2 depicts a

sample XML Anthill configuration file.

<?xml ver si on=" 1. 0" encodi ng=" us−asci i " ?>

<! ELEMENT Syst emConf i gur at i on (Component +, Par amet er *) >

<! ATTLI ST Syst emConf i gur at i on ver si on CDATA #REQUI RED>

<! ELEMENT Component (Par amet er *) >

<! ATTLI ST Component name CDATA #REQUI RED>

<! ATTLI ST Component cl ass CDATA #REQUI RED>

<! ELEMENT Par amet er EMPTY>

<! ATTLI ST Par amet er name CDATA #REQUI RED>

<! ATTLI ST Par amet er t ype CDATA #REQUI RED>

<! ATTLI ST Par amet er val ue CDATA #REQUI RED>

Figure 7.1 Factory DTD (factory.dtd)

<?xml ver si on=" 1. 0" encodi ng=" us−asci i " ?>

<! DOCTYPE Syst emConf i gur at i on SYSTEM " f act or y. dt d" >

<Syst emConf i gur at i on ver si on=" 1. 0" >

<! −− Thi s sect i on l et s you speci f y whi ch ki nd of Ant you want your

Nest t o gener at e. −−>

<Component name=" Ant Fact or y" cl ass=" j xt agnut ant . Gnut ant Fact or y" / >

<! −− Thi s sect i on i s meant f or set t i ng whi ch Manager i nst ance shoul d

be i n char ge of schedul i ng ant axecut i on f or your Nest . −−>

<Component name=" Manager " cl ass=" j xt ai mpl . Manager " >

<Par amet er name=" nt hr eads" t ype=" i nt " val ue=" 20" / >

</ Component >

<! −− The Nest TTL i s your Ant s’ TTL val ue wi t hi n t he Ant hi l l Net wor k.

−−>

<Par amet er name=" Nest TTL" t ype=" i nt " val ue=" 20" / >

The JXTAnthill Project 86

<! −− A " yes" val ue means t hat you want your Nest t o r ead i nf or mat i on

 such Pher omone obj ect s and Nei ghbour l i st s f r om conf i gur at i on

 f i l es i f t her e ar e. Ot her wi se (a " no" val ue) br and new i nst ances

 wi l l be cr eat ed f or each sessi on. −−>

<Par amet er name=" ser i al i zat i on" t ype=" St r i ng" val ue=" yes" / >

<! −− Thi s set t i ngs ar e about st or age. The val ue i s t he space assi gned

t o each st or age i nst ance expr essed i n Byt es. Ther e has t o be one

ent r y f or each ant speci es we ar e wi l l i ng t o accept i n our Nest .

−−>

<Par amet er name=" r andomant " t ype=" l ong" val ue=" 10000000" / >

<Par amet er name=" j xt agnut ant " t ype=" l ong" val ue=" 10000000" / >

<Par amet er name=" j xt ant " t ype=" l ong" val ue=" 10000000" / >

<! −− Her e you can speci f y al l t he ant speci es your nest wi l l accept ,

separ at ed by a bl ank space −−>

<Par amet er name=" speci es" t ype=" St r i ng" val ue=" j xt ant j xt agnut ant " / >

<! −− The Cl oseness val ue means how many answer s we wi sh a Gnut ant t o

r et ur n −−>

<! −− The Capaci t y val ue means how many ent r i es a Gnut ant Pher omone wi l l

be abl e t o st or e. A zer o val ue means i nf i ni t e −−>

<Par amet er name=" Gnut ant Pher omoneCl oseness" t ype=" i nt " val ue=" 20" / >

<Par amet er name=" Gnut ant Pher omoneCapaci t y" t ype=" i nt " val ue=" 0" / >

<! −− Thi s i s t he t i me i n mi l l i seconds el apsi ng bet ween t wo f ol l owi ng

di scover y r equest s. −−>

<Par amet er name=" sl eept i me" t ype=" i nt " val ue=" 15000" / >

<! −− The f ol l owi ng par amet er speci f i es wher e t he conf i gur at i on f i l es

 cr eat ed by " j xt ant hi l l " shoul d be pl aced. You have t o poi nt out

 a pat h wi t hout t he f i nal pat h−separ at or char . −−>

<Par amet er name=" conf di r " t ype=" St r i ng" val ue=" / r oot " / >

<! −− Gat e Ser vi ce Adv l i f e t i me i n mi l l i seconds. −−>

<Par amet er name=" Gat eAdvLi f eTi me" t ype=" i nt " val ue=" 1800000" / >

</ Syst emConf i gur at i on>

Figure 7.2 JXTAnthill XML configuration file

The JXTAnthill Project 87

Figure 7.1 shows the DTD that the Anthill XML configuration file should reflect.

There are three elements:

� System Configuration. A system configuration consists of a not empty set of

Components along with a potentially empty set of Parameters.
� Component. Each Component element is characterized by a couple of

attributes, namely:
� Name. This attribute is needed for identifying the interface this component

element refers to. It is not required to highlight the interface’s fully qualified

name. The name’s value is merely used for indexing purposes.
� Class. The class attribute tells the platform which class is in charge of

actually implementing the above specified interface. In order to retrieve the

class attribute’s value, the application code should be aware of the name

attribute’s value used as index.

Since components are used in order to define which class implements a given

interface, and since classes might need to be initialized using a given set of

parameters, a component element accepts a potentially empty set of parameter

elements as well.

� Parameter. The parameter element is used for defining elementary−type

configuration parameters. The following attributes characterize a parameter

element:
� Name. This is the logical name used for indexing the parameter itself. It has

to be necessarily unique in the given configuration file.
� Type. This attribute defines the parameter’s type (int, string, long, etc.).
� Value. This is simply the value associated with the parameter itself.

The JXTAnthill Project 88

AntFactory Component. The first component itemized in figure 7.2 is the one

named AntFactory. This component tells the platform which factory class has to

be used for instantiating ants, or in other words this component defines which is

the high−level service provided by the nest.

Manager Component. This component defines which class implementing the

anthill.nest.Manager interface should be used. This component needs one input

parameter: the maximum number of admitted threads. What this exactly means

is explained in section 7.4.

Nthreads Parameter. This parameter specifies how many threads the Manager

is allowed to instantiate for executing ants.

Nest TTL Parameter. The JXTAnthill implementation lets users customize the

Time−to−Live value assigned to ants. It has been decided to give users control

above this parameter since JXTAnthill may be deployed in different scenarios

characterized by deeply different kinds of topologies and dynamics: having an

“hardwired” TTL value would have led to a too much inflexible result. Another

approach would have been letting the platform itself be in charge of tuning the

TTL value as well as possible, but probably in this case nests should have been

provided with some kind of knowledge about topological issues or the kind of

services ants were meant to perform. Having the TTL parameter configurable by

users seems to be a good trade off between simplicity and flexibility. The TTL is

expressed as number of hops in the JXTAnthill network.

Serialization Parameter. While a JXTAnthill nest is alive, it interacts with its

hosting environment collecting information about the nests it is surrounded by.

Furthermore nests are in charge of managing data structures on behalf of ants:

the pheromone objects. All this information is not required to be handled in any

specific way, so different Anthill implementations are expected to treat

The JXTAnthill Project 89

discovered information differently: they could decide to permanently store these

data structures for reusing them in the future, or not. It is important to highlight

there is not an a priori most fitting approach to resource management, since

JXTAnthill can be used for building a pure peer−to−peer system both in a highly

dynamic environment and in a static one. Let us suppose to deploy an Anthill

implementation in an ad−hoc and highly dynamic network. In such a scenario it

would not be of any interest saving information describing each session’s

neighbourhood: all likely at the next start up the nest will have a completely

different scope. Differently, in an environment were nodes are not supposed to

be dynamic, periodically storing information about the nest’s neighbourhood

becomes useful. Suppose a nest crashes: at the next start up it would be

bereaved of discovering all its neighbours once again thanks to the previously

collected and stored information. Due to this set of reasons the JXTAnthill

implementation grants users the ability to control this behavior by setting the

serialization parameter. A “ yes” value means information gets locally stored, a

“no” value means the opposite.

Storage Settings. These parameters allow users to specify how much disk

space is available to each ant−species storage instance. There has to be one

entry per ant species.

Species Parameter. The species parameter simply states which ant species the

nest is willing to accept.

Closeness & Capacity Parameters. These are parameters specific to the ant

species used along with the JXTAnthill implementation. They define properties

concerning the pheromone data structure used by ants.

Sleeptime Parameter. This parameter defines how much time elapses between

two consecutive discovery sessions. See section 7.3 for more details.

The JXTAnthill Project 90

Confdir Parameter. This parameter’s value identifies where configuration files

should be locally placed.

GateAdvLifeTime. This parameter states how long it will take before one nest’s

Gate Service advertisement expires, both in the local and remote caches.

All these parameters and components are read from the configuration file and

later on obtained through an anthill.factory.Factory instance.

7.3 JXTAnthill: Nest start up

The class responsible of a nest’s booting process is the jxtaimpl.AnthillPeerWS

class. When instantiated it is provided with an anthill.factory.Factory instance it

will use to obtain all the needed configuration parameters. Besides properly

setting all the parameters itemized in the XML configuration file, this class is in

charge of instantiating all the other modules needed by the JXTAnthill platform.

A detailed representation of all the performed steps is depicted in the UML Nest

Start Up Sequence Diagram (Appendix A). What follows is a brief and literal

description of the process:

1. Information such as the actual Manager implementation class to be used, the

AntFactory and the TTL value are obtained from the given Factory instance.

2. Some of the needed classes are instantiated (NeighbourManager, Nest).

3. All the advertisements needed for instantiating the JXTA−enabled services

provided by the nest are created [PJJFPG]. Advertisements, as stated in the

chapter dealing with the JXTA Technology, are XML documents used for

publishing the existence of heterogeneous resources. There are

advertisements publishing peers, peer groups, pipes, rendezvous nodes etc.

The JXTAnthill Project 91

4. The AnthillGroup advertisement is created. This is the JXTA peer group

advertisement needed for initializing and booting the nest itself: this XML

document itemizes all the services the nest has to provide as member of the

group.

5. The AnthillGroup is initialized using the group advertisement formerly created.

At this step the nest can be already thought as being part of the JXTAnthill

network.

6. The AnthillGroup advertisement and the GateService advertisement are

published. Publishing is necessary for spreading in the JXTAnthill network the

knowledge of a new nest birth.

7. A jxtaimpl.GateServiceAdvPublisher is instantiated. This class is in charge of

periodically publishing the GateService advertisement.

Once these steps have been successfully accomplished, the AnthillPeerWS

instance starts engaging a fundamental task: the discovery of remote nests. This

class implements the jxtaimpl.PeerFinder interface and extends the Java

Thread class. In order to discover other nests, JXTAnthill relies on one of the

core JXTA protocols: the Peer Discovery Protocol (PDP) [PJJFPG]. According to

the sleeptime parameter described in the former section, this instance will

periodically issue a PDP query message. What this query message looks for, are

JXTA pipe advertisements whose name has to be equal to the one used for

identifying the Anthill GateService pipe advertisement. Each discovered pipe

advertisement is translated into a valid JXTAnthill Nest identifier and saved into

the NeighbourManager instance.

The JXTAnthill Project 92

7.4 NeighbourManager Implementation

The jxtaimpl.NeighbourManager class hides an hash table in which all the

collected nest identifiers are arranged. In this data structure no duplicates are

admitted: every time the addNeighbour(anthill.NestId id) method is called, the

NeighbourManger instance will test whether the given identifier is already stored

in the local hash table or not: the identifier gets locally stored if and only if it is

not already in. Neighbors identifiers can be removed from the

NeighbourManager’s internal data structure as well. This happens when a nest

tries to get connected with a peer that turns out to be unreachable. If so its

identifier gets flushed out from the local cache. If that nest came back to life in

the JXTAnthill network, it would publish back its own GateService advertisement

becoming “visible” again to the other nests.

7.5 GateServiceAdvPublisher Implementation

JXTA advertisements are spread through the network using the Peer Discovery

Protocol, the means by which JXTA resources can be published and discovered

by JXTA−based peers [PJJFPG]. Since there are no assumptions concerning

the dynamics each peer will expose, to prevent advertisements from lingering in

the network even after their publishing peer has crashed down or has simply

been disconnected from the network, to each advertisement is assigned a

customizable life time. The JXTAnthill user has control over this value since it

can be configured through the XML configuration file formerly discussed. The

ability of tuning the GateService advertisement’s lifetime is fundamental, as it

prevents nests from maintaining in their neighbour tables no more useful

information. The task of periodically publishing back the GateService service

advertisement is accomplished by a jxtaimpl.GateServiceAdvPublisher instance.

The JXTAnthill Project 93

This is merely a thread which will periodically republish the GateService pipe

advertisement in the JXTAnthill network. The period is given by the

GateAdvLifeTime parameter value, and the jxtaimpl.GateServiceAdvPublisher

object is instantiated by the jxtaimpl.AnthillPeerWS instance.

7.6 Nest Implementation

Once the JXTA platform has been started, and both the GateService and the

AnthillGroup advertisements have been successfully published, the attention

gets focused on the jxtaimpl.Nest instance. This class implements two

interfaces:

� anthill.nest.Nest.
� anthill.nest.AntListener.

The jxtaimpl.Nest constructor accepts an anthill.factory.Factory instance as

input parameter. Once the constructor is invoked it will check whether all the

necessary configuration files can be locally found or not, starting from the current

directory. This check occurs if and only if the serialization parameter has a “yes”

value. During each session, the following information is saved:

� The pheromone objects.
� The set of neighbours.
� The storage instances.

Figure 7.3 depicts how these data structures are locally arranged.

The JXTAnthill Project 94

Figure 7.3 Configuration Directory structure

The nest instance is only in charge of managing the top level resources, namely

the files neighbours.obj, pheromone.obj and pipeID.obj. The SharedResources

folder contains each ant species’ storage. In order to keep the local information

as much updated as possible, upon changes in the pheromone data structures

or in the set of known neighbours, the nest instance saves these data structures

to disk. This way if the nest crashed down, it would be restarted with the most

recent knowledge available about the network. As stated before the

jxtaimpl.Nest class implements the anthill.nest.AntListener interface. This implies

that all the received ants will be delivered to the nest instance by invoking its

deliver(AntDescriptor aDesc) method. The received ants are passed to the

jxtaimpl.Manager instance which is described in the reminder of this chapter.

The JXTAnthill Project 95

7.7 GateService Implementation

The means by which virtual ants can move from one nest to another in the

JXTAnthill network is given by the GateService. The JXTAnthill implementation

introduces a JXTA−based implementation of this service. What this means is

that JXTA pipes are used as the standard communication primitive among nests.

JXTA pipes have been preferred to any other communication mechanism due to

their interesting set of properties. Although JXTA pipes are classified as

unreliable, they still offer many other built in facilities fundamental to peer−to−

peer systems development. Using JXTA pipes it is no more necessary to mind

about firewall and NAT related issues: nests are enabled to communicate with

one another always using the most suitalble protocol available (TCP/IP, HTTP

over TCP/IP if traversing a firewall or a NAT, etc.). Even further, using JXTA

pipes it is not required to face routing related problems since messages are

exchanged using the peer endpoint protocol (PEP) formerly described in the

chapter about the JXTA Technology [PJVN].

The jxtaimpl.GateService class implements both the net.jxta.service.Service and

the anthill.nest.Gate interfaces. This class is instantiated invoking the init method

over the jxtaimpl.AnthillGroup instance. The jxtaimpl.GateService class is one of

the three implementation classes needed to provide the GateService service. As

seen in the previous chapter the other ones are:

� jxtaimpl.GateServiceReceiver
� jxtaimpl.GateServiceBuffer
� jxtaimpl.GateServiceServer

All these classes are instantiated during the GateService initialization process.

The most noticeable method belonging to this class is the public void

send(NestId destId, Ant ant, int ttl) method. This has to be invoked in order to

The JXTAnthill Project 96

send ants from the hosting nest to the one identified by the given NestId. What

this method does is try and get connected to the destination nest using the given

NestId as a valid JXTA pipe advertisement. The ant will be sent if and only if the

ttl (Time−to−Live) value is greater than zero. The message is composed by two

elements:

� The ANT_MESSAGE_TAG.
� The serialized AntDescriptor wrapping the virtual ant.

The ANT_MESSAGE_TAG is simply a string identifying the message’s content

type: an ant. The AntDescriptor is a wrapper used for exchanging ants between

nests. Before being sent it is converted into a raw stream of byte, and then

attached to the ANT_MESSAGE_TAG. The jxtaimpl.GateService instance will try

and send the message for a given amount of time. If something goes wrong an

IOException is thrown.

At the moment the JXTAnthill GateService implementation only uses point−to−

point JXTA pipes for exchanging messages: it could be interesting to test which

kind of behavior would emerge using propagate JXTA pipes implementing a

one−to−many communication pattern among nests. If the jxtaimpl.GateService

class is in charge of sending ants, the receiving task is up to the

jxtaimpl.GateServiceReceiver class. This class is in charge of writing each

received ant into a synchronized buffer of messages, shared with the

jxtaimpl.GateServiceServer instance. It is this object that will extract ants from

messages and will deliver them to the class instance implementing the

anthill.nest.AntListener interface. The whole process is graphically described in

the GateService UML sequence diagram presented in Appendix A.

The JXTAnthill Project 97

7.8 Manager & Executor Implementation

Even if upon receipt ants are passed to the jxtaimpl.Nest instance, this class

does not deal with ants execution. For this purpose the anthill.nest.Manager

interface is implemented by the jxtanthill.Manager class. This class is

instantiated using as input parameter the nthreads configuration parameter

examined in section 7.2. As stated before this parameter defines the maximum

number of threads this class is allowed to instantiate for executing ants. Its

thread pool is represented by a pool of jxtaimpl.Executor instances. When ants

are received they are associated with an Executor instance, if available,

otherwise the ant is put into a waiting queue. Ants are actually executed by an

Executor instance on behalf of the Manager.

7.9 DownloadService Implementation

In the JXTAnthill implementation ants are not allowed to move resources through

the Anthill network: they can only carry along resource descriptors. These

descriptors can be later on used for actually downloading the discovered

resource by the JXTA−enabled DownloadService service. The UML sequence

diagram describing an hypothetical download session, can be found in Appendix

A. In order to download a resource, the Nest.downloadResource(...) method

should be invoked. This causes the local nest to instantiate a

jxtaimpl.Downloader object passing it the resource descriptor identifying what

should be downloaded. The resource descriptor wraps a valid JXTA pipe

advertisement. This is the pipe advertisement the nest owning the resource has

used for opening its DownloadService input pipe. The jxtaimpl.Downloader

instance uses this pipe advertisement for opening its DownloadService output

pipe. What follows describes what happens when instantiating this class:

The JXTAnthill Project 98

out Pi peAdv = (Pi peAdver t i sement) Adver t i sement Fact or y. newAdver t i sement (

Pi peAdver t i sement . get Adver t i sement Type()) ;

out Pi peAdv. set Name(r esour ce. get Pi peName()) ;

URL ur l = r esour ce. get Pi peI d() ;

out Pi peAdv. set Pi peI D((Pi peI D) I DFact or y. f r omURL(ur l)) ;

out Pi peAdv. set Type(r esour ce. get Pi peType()) ;

i nPi peAdv = (Pi peAdver t i sement) Adver t i sement Fact or y. newAdver t i sement (

Pi peAdver t i sement . get Adver t i sement Type()) ;

i nPi peAdv. set Name(" t empPi pe") ;

i nPi peAdv. set Pi peI D(I DFact or y. newPi peI D(ant hi l l Gr oup. get Peer Gr oupI D())) ;

i nPi peAdv. set Type(Pi peSer v i ce. Uni cast Type) ;

Figure 7.4 DownloadService initialization

Firstly it creates an output pipe using the DownloadService pipe advertisement

the resource descriptor encloses. This pipe is used to tell the remote

DownloadManager both which resource is required and which pipe

advertisement it should use for uploading the resource: remember we are

dealing with uni−directional pipes. As a second step, a temporary pipe is

instantiated: this is the pipe used for actually reading in the resource as a byte

stream. Once the connection has been successfully established the Downloader

will send its counterpart a message enclosing the following tags:

� PipeID
� PipeName
� PipeType
� ResourceID
� AntSpecies

The first three elements describe the pipe advertisement that the

DownloadManager instance should use for uploading the actual content

associated with the resource identified by the fourth message element. The fifth

message tag simply states which ant species the requested resource belongs to.

Right after the message has been sent the jxtaimpl.Downloader instance keeps

The JXTAnthill Project 99

on passively waiting for the jxtaimpl.DownloadManager to upload the resource’s

content. Once the content has been completely read in from the input pipe, the

Downloader will update the local storage with the acquired resource.

7.10 AnthillResource Implementation

As one could have argued, resource descriptors actually play a fundamental role

in the process of downloading a real resource in the JXTAnthill implementation.

The jxtanthill.storage.AnthillResource class is the descriptor used in our Anthill

binding. It contains information about the actual resource, such as a logical

description, its logical name, its unique identifier, the content’s length and the

pipe advertisement each remote nest should use for downloading the content.

These advertisements are not published by every JXTAnthill nest, but simply

wrapped into resource descriptors, thus bereaving every other nest of the

burden to manage and cache a huge amount of potentially not useful data. In

this way nests will handle the GateService service pipe advertisement only for

downloading a resource.

7.11 Identifiers Implementation

The jxtaimpl.ids package contains all the identifier implementations needed in

the JXTAnthill Anthill binding.

� NestId. As explained in the previous chapter each Anthill nest is identified by

its own GateService pipe advertisement. So a valid jxtaimpl.ids.NestId will

consist of:

The JXTAnthill Project 100

� The pipe identifier.
� The pipe’s logical name.
� The pipe type.

The last two components are represented as strings, while the first one is

internally stored as a valid URL. By invoking the NestId.getPipeAdv() a JXTA

pipe advertisement is automatically returned. Two jxtaimpl.ids.NestId

instances equal if and only if their URLs equal with each other.
� RequestId. A request identifier is initialized using the requesting nest’s

identifier. This way each request can be mapped to its originating nest. This

class’s constructor relies on the jxtaimpl.ids.GenericId class constructor.
� AntId. An ant identifier requires as input parameter the identifier of the

request it has to satisfy. So, given an ant identifier the ant’s nest can be

discovered.
� GenericId. This class provides the constructor both the RequestId and the

AntId classes use. This method needs an Object as input parameter, and

simply generates an identifier shaped as a string consisting of two main parts:
� The provided object’s string representation.
� A randomly generated value.

These identifiers are guaranteed to be unique in the JXTAnthill network. A

JXTAnthill nest is identified by the JXTA pipe identifier associated with the pipe it

uses for providing the GateService service. This JXTA identifier is already

guaranteed to be unique, so will be the nest identifier as well.

A request identifier is derived starting from the originating nest identifier and a

randomly generated value, so it is guaranteed to be unique until the pseudo−

random number generator engine will wrap around starting reproducing the

same sequence of values. The same considerations can be applied to ant

identifiers: they are obtained starting from a request identifier and a randomly

generated value.

The JXTAnthill Project 101

7.12 Storage Implementation

In order to permanently store different kinds of information locally to a nest, the

Anthill Project uses the concept of storage. In the Anthill Project each storage

implementation has to be compliant with the interfaces provided by the

anthill.storage package. In order to manage documents, the JXTAnthill binding

defines a CMS−based storage implementation [CMS]. The jxtaimpl.nest class is

in charge of instantiating a storage when an ant requires it. The following set of

parameters is passed to the jxtaimpl.storage.CmsStorage constructor:

� The ant species the requiring ant belongs to.
� The amount of disk space granted to this storage instance. This parameter is

specified in the XML configuration file depicted in figure 7.2.
� A valid JXTA pipe identifier.
� A pipe name.
� A valid JXTA pipe type.

The last three parameters need an explanation. As already stated, the JXTAnthill

binding does not allow ants to collect real resources while travelling through the

network: ants can only gather resource descriptors. Once the ant is returned to

its home nest, the resource might be downloaded through the JXTA−enabled

DownloadService service. In order to do this every CmsStorage has to be

associated with a valid JXTA pipe advertisement that remote nests will use to

download resources. This advertisement is added to every resource descriptor

(jxtaimpl.storage.AnthillResource) the CmsStorage instance will return to

querying ants. Once a CmsStorage is instantiated, if necessary it creates its own

folders for storing resources beneath the SharedResources folder (see Figure

7.3). If there are previously saved resources, it computes the amount of already

used disk space. Every time a resource has to written to disk, the CmsStorage

The JXTAnthill Project 102

will firstly check whether there is enough disk space left or not, potentially

throwing a CapacityException: the resource is permanently added if and only if

the test will give a positive result. The CmsStorage class only accepts query

objects belonging to the jxtaimpl.storage.Query class. This class’ instances

consist of an element name and a set of keywords. Locally to a nest every

resource is described by an XML document, a ContentAdvertisement: upon each

query receipt the storage will look for resources whose ContentAdvertisement

exposes at least one of the specified keywords for the given element name. If

something useful is found, an AnthillResource instance is generated and

returned to the querying ant.

7.13 Rendezvous and Relay Nests

As stated in chapter 4, JXTA peers need a way for dynamically discovering one

another. This task is accomplished through the synergic usage of both the peer

discovery protocol (PDP) and a particular kind of peer: the rendezvous peer.

Rendezvous peers are fundamental to the peer discovery protocol since they

essentially act as a repository of advertisements. Each JXTA peer has to be

booted with at least one rendezvous peer, or it may be enabled to dynamically

discover one. Every time a peer publishes an advertisement through the PDP,

that advertisement will be cached by the rendezvous peer(s) the publishing node

is connected to. As already explained, and as figure 7.5 depicts, JXTA

rendezvous peers even play an important role in the process of requests

propagation among peers: they are the only peers enabled to widen a request’s

scope by forwarding it to both other rendezvous and simple JXTA peers.

The JXTAnthill Project 103

Figure 7.5 JXTA Rendezvous peers role

Since JXTAnthill nests are JXTA peers, they need to rely on at least one

rendezvous nest. In order to have a nest acting as a rendezvous peer it is

sufficient to configure it as a rendezvous through the JXTA Configuration Panel

displayed when booting the peer. Even rendezvous nests should be configured

to use other nests as their own rendezvous nests. At the moment JXTAnthill

nests are not capable of dynamically binding to newly discovered rendezvous

nests, so they may only accept a static list of nests provided through the JXTA

Configuration Panel. Now we can envision an initial topology the JXTAnthill

network should reflect, in which rendezvous nests are as much as possible

aware of one another. In this way rendezvous nests will give life to an highly

connected network that will maximize each nest’s discovery capability.

Rendezvous nests can be thought as the cores of clusters of nests: a cluster of

nests is made up by nests configured with the same set of available rendezvous

nodes. This way the initial topology of the JXTAnthill network would be like the

one depicted in figure 7.6.

The JXTAnthill Project 104

Figure 7.6 JXTAnthill network initial topology. Rendezvous nests are depicted bigger than simple nests. The bidirectional

arrows represents highways: two clusters are connected by an arrow if they are aware of each other.

In the above representation rendezvous nests are depicted bigger than simple

nests. As one can see they are surrounded by clouds of simple nests and

interconnected with one another by highways. The existence of an highway

between two rendezvous nodes does not mean there is an already established

connection between them: what it simply means is that the two peers are aware

of each other. It is interesting to highlight that this is only the JXTAnthill network

initial configuration: as nests discover one another the complexity of the graph

grows dramatically, and this has a great impact on the scope of requests. It is

important to point out this is only one of the many initial configurations we can

envision for the JXTAnthill network, absolutely not the only one.

Figure 7.7 Relay nests’ behavior

The JXTAnthill Project 105

Since JXTAnthill nests might be physically located on different networks

potentially divided by firewalls, it is fundamental to configure nests with a set of

relay nests. As explained in chapter 4, these are peers in charge of relaying

messages from one peer to another merely acting as traditional gateways. They

even collect and cache routing information: this way, if a peer was unable to

directly route a message to its destination, it would leverage on its relay peer(s).

A JXTAnthill nest can be instructed to act as a relay peer via the JXTA

Configuration Panel.

7.14 JXTAnthill Deployment

Figure 7.8 JXTAnthill UML Deployment Diagram

The JXTAnthill Project 106

Being each JXTAnthill nest a pure JXTA peer, it can be deployed on any device

provided with all the necessary libraries and having a digital heart beat.

Obviously we firstly need the Anthill jar file containing the JXTAnthill

implementation as well as. The bulk of libraries required by the JXTA platform.

The most relevant jars are itemized in figure 7.8.

These libraries are mainly needed by the JXTA platform and so they might

change in time according to JXTA developers’ needs. For this reason the

provided list has not to be thought as definitive at all. It does not matter which

kind of connectivity is available to the device hosting the JXTAnthill nest since

JXTA is completely independent from issues like this. The only imposed

requirement is about having a Java Virtual Machine available on the device.

7.15 Conclusions & Future Improvements

The Anthill Project aims to define a framework to support the design,

implementation, and evaluation (testing) of P2P applications. The Anthill Project

is rooted in concepts borrowed from complex adaptive systems (CAS), since we

think peer−to−peer systems can be thought as instances of CAS: they expose

properties typical to complex systems, such as the absence of whatsoever form

of centralization, a strong interaction among their basic components (the network

nodes), and large scale and extreme dynamism of their operating

environment [BMM−09−01]. The Anthill framework supports P2P applications

based on the multi−agent system paradigm (MAS). What this means is that

services have to be implemented developing agents capable of moving through

the Anthill network. These mobile agents are called ants. Anthill uses a

terminology derived from the ant colony metaphor. An Anthill network is made up

of nests, devices running the Anthill runtime environment and provided with

The JXTAnthill Project 107

some kind of connectivity. Each nest is in charge of handling requests issued by

higher level applications. All these requests entail the creation of a new ant

belonging to a species able to satisfy the request itself. Once created, ants are in

charge of executing their own task observing their local environment, interacting

with it and performing simple local computations. In Anthill emergent behavior

manifests itself as swarm intelligence whereby the collection of simple ants of

limited individual capabilities achieves “intelligent” collective behavior [BMM−09−

01]. Both the run−time environment and the simulation environment expose the

same API, so testing a newly developed ant species does not entail writing the

same code twice.

This thesis deals with the first implementation of the Anthill Project’s run−time

environment. This implementation is written in Java and based on a new

technology: JXTA. JXTA is an open−source project started in May 2001 and

promoted by Sun Microsystems, Inc. Project JXTA defines a new platform for

developing peer−to−peer applications, and guarantees the following

properties [PJTO]:

� Interoperability. JXTA technology is designed to enable interconnected peers

to offer services to each other seamlessly across different P2P systems and

different communities .
� Platform Independence. JXTA technology is designed to be independent of

programming languages, system platforms, and networking platforms.
� Ubiquity. Each JXTA peer can be deployed on any device having a digital

heart beat.

We chose the JXTA Technology as the starting point for our Anthill run−time

environment implementation, due to the enormous set of built−in facilities it

provides: peer and peer group establishing and management, ad−hoc message

routing, firewall and NAT traversing, virtual communication channels etc. The

The JXTAnthill Project 108

proposed JXTA−based Anthill implementation is called JXTAnthill. The

implemented run−time environment has been tested with the Gnutant ant

species, an ant species implementing a file−sharing service (chapter 8). At the

moment JXTAnthill provides all the services ants should need for accomplishing

their own tasks, but improvements are still expected, especially for gaining in

performance. Here are itemized the topics we feel as being of major relevance.

Dynamic Discovery & Binding to new Rendezvous/Relay nests. At the

moment, once an Anthill nest is started, it has to be configured with a static set

of rendezvous and relay peers. Rendezvous peers are useful for augmenting

each nest’s degree of knowledge about the environment it is in. The more

rendezvous nodes are available to a peer, the larger its own neighbourhood will

become. This is because rendezvous nodes play a fundamental role to the JXTA

discovery process used by JXTAnthill for finding other nests in the network. The

same set of considerations can be applied to relay nodes, peers used for routing

purposes. So, future JXTAnthill implementations should work over this topic,

enabling JXTAnthill nests to dynamically bind to newly discovered rendezvous

and relay nests.

Dynamic Downloading of Unknown Ant Species. We expect that future

JXTAnthill implementations will be able to dynamically download the code of ants

not yet locally installed. This way while a nest is alive, new ant species will be

transparently added to the set of already known ants thus extending the set of

high−level services available to the nest.

The JXTAnthill Project 109

8 Example Application and Simulation Results

8.1 Intoduction: Technical Report Sharing

Figure 8.1 techrep package UML Class Diagram

The Anthill Project JXTA binding defines and implements a middle level

infrastructure meant for granting virtual ants a basic set of services. In this

architecture the only compulsory service is the GateService service, required by

ants for moving from one nest to another in the Anthill network; beyond this

service, different bindings of the Anthill project may provide other specific

services not useful to every ant species. Stated this, in the Anthill Project’s

architecture, ants correspond to high level services: we can foresee different ant

species implementing a classical document sharing service but with inherently

different logic, ant species implementing a load balancing service, etc. On top of

The JXTAnthill Project 110

these two layers developers can place their front−end applications, the

interfaces standing between users and the Anthill nest.

Figure 8.2 Anthill three layers structure

As depicted in figure 8.2, high−level applications are allowed to directly interact

with the Anthill infrastructure. Theoretically applications should not be aware of

ants. What an application can do is strictly limited to instantiating and passing

valid queries to their actual nest instance via the provided methods. An issued

query may then be followed by the receipt of a response message. A class

willing to receive responses associated with formerly issued queries, has to

implement the anthill.nest.ResponseListener interface. The application

proposed along with this thesis is a document sharing application for sharing

technical reports among universities and researchers. We have decided to test

the Anthill framework in such a field mainly for comparing our peer−to−peer

system’s performance to the ones exposed by nowadays file sharing systems.

What we are more interested in is the behavior of the ant species used for

providing the above service. In order to show how an high level application can

easily interact with a nest, it is interesting to show the piece of source code in

charge of passing requests to the Anthill infrastructure.

Request I d r eqI d = new Request I d(l ocal Nest . get Nest I d()) ;

Quer y quer y = new Quer y((St r i ng) sear chByBox. get Sel ect edI t em() ,

 keywor ds) ;

Quer yResul t s r esul t s = new Quer yResul t s(

l ocal Nest , sear chByBox. get Sel ect edI t em() . t oSt r i ng() . t r i m() , keywor ds) ;

l ocal Nest . r equest (r eqI d, quer y, r esul t s) ;

Figure 8.3 Code issuing a search query

The JXTAnthill Project 111

Request I d r eqI d = new j xt ai mpl . i ds. Request I d(nest . get Nest I d()) ;

St r i ng keys = f i l e. get Name() +" " +t ype+" " +desc;

nest . i nsRequest (r eqI d, keys) ;

Figure 8.4 Code issuing an insertion−event message

In both cases what the application does is simply instantiating an identifier for the

query it is about to issue, and then the most appropriate query object, if required.

The last step is calling one of the methods provided by the Anthill nest. This way

applications have not to deal with ants and other related issues, since it is all

transparently handled by the Anthill infrastructure.

8.2 TechRep: Technical Report Sharing Application

TechRep is an example application layered on top of the JXTAnthill Project,

meant for sharing technical reports in a peer−to−peer fashion. The TechRep

application presented along with this thesis is in its preliminary stage, and we

expect to improve it in the future. The usage of this application will let us explore

the possibilities offered by the synergic employment of the peer−to−peer

architecture and the mobile−agents paradigm. This application’s code resides in

the techrep package. Figure 8.1 depicts the techrep UML Class Diagram.

Besides the classes merely used for building this application’s GUI, our interest

has to be focused in the TrBibReader package, whose UML class diagram is

depicted in figure 8.7.

8.3 Background: The BIB Syntax (CS−TR−V2.1)

Before going deeper into the detailed explanation of the TrBibReader package, it

is necessary to introduce some of the concepts fundamental to the remainder of

The JXTAnthill Project 112

this chapter. At the moment, all the technical reports we want to share are

accessible via ftp through the web. Each technical report is associated with a

textual metadata describing the technical report itself. All these metadata have to

be compliant with the syntax imposed by the current BIB version adopted, and

are arranged into textual files. A sample BIB metadata is the following:

BI B−VERSI ON: : CS−TR−v2. 1
 I D: : ncst r l . caber net / / BOLOGNA#UBLCS−99−10
 ENTRY: : June 10, 1999
ORGANI ZATI ON: : Uni ver si t y of Bol ogna (I t al y) . Depar t ment of Comput er

 Sci ence.
 TI TLE: : Pr oceedi ngs of t he Wor kshop on Vi r t ual Document s,

 Hyper t ext
Funct i onal i t y and t he Web

 AUTHOR: : Mi l osavl j evi c, M.
 CONTACT: : <Mar i a. Mi l osavl j evi c@cmi s. CSI RO. AU>
 AUTHOR: : Vi t al i , F.
 CONTACT: : <f abi o@cs. uni bo. i t >
 AUTHOR: : Wat t er s, C.
 CONTACT: : <wat t er s@cs. dal . ca>
 DATE: : May 1999
 PAGES: : 51
 COPYRI GHT: : Depar t ment of Comput er Sci ence, Uni ver si t y of Bol ogna,

 I t al y. Al l r i ght s r eser ved.
OTHER_ACCESS: : URL: f t p: / / f t p. cs. uni bo. i t / pub/ t echr epor t s/ 99−10. ps. gz

ABSTRACT: :

Col l ect i on of paper s pr esent ed at t he Wor kshop on Vi r t ual Document s,
Hyper t ext Funct i onal i t y and t he Web.

END: : ncst r l . caber net / / BOLOGNA#UBLCS−99−10

Figure 8.5 bib file sample entry

In order to more easily query the resource manager, we want to translate all

these bib entries into XML documents. The DTD of the documents we want to

generate is the following:

<?xml ver si on=” 1. 0” encodi ng=” us−asci i ” ?>

<! ELEMENT Tr Bi b (Aut hor +) >

<! ATTLI ST Tr Bi b BI B−VERSI ON CDATA #REQUI RED>

<! ATTLI ST Tr Bi b I D CDATA #REQUI RED>

<! ATTLI ST Tr Bi b ENTRY CDATA #REQUI RED>

The JXTAnthill Project 113

<! ATTLI ST Tr Bi b ORGANI ZATI ON CDATA #REQUI RED>

<! ATTLI ST Tr Bi b TI TLE CDATA #REQUI RED>

<! ATTLI ST Tr Bi b DATE CDATA #REQUI RED>

<! ATTLI ST Tr Bi b COPYRI GHT CDATA #REQUI RED>

<! ATTLI ST Tr Bi b OTHER_ACCESS CDATA #REQUI RED>

<! ATTLI ST Tr Bi b ABSTRACT CDATA #REQUI RED>

<! ATTLI ST Tr Bi b END CDATA #REQUI RED>

<! ELEMENT Aut hor >

<! ATTLI ST Aut hor Name CDATA #REQUI RED>

<! ATTLI ST Aut hor Cont act CDATA #REQUI RED>

Figure 8.6 DTD of the XML document used for representing bib items

8.4 Package TrBibReader

This package contains the classes needed for parsing a bib file and for

generating an XML representation of its textual content. As figure 8.7 depicts,

there are three classes:

Figure 8.7 TrBibReader UML Class Diagram

The JXTAnthill Project 114

� TrBibReader.Reader
� TrBibReader.Bib2XML
� TrBibReader.BibFormatException

8.4.1 Class TrBibReader.Reader

This class’ constructor takes as input parameter a File object, or a String

representing the complete path to the bib file describing the resources we want

to share. After having instantiated a Reader, what we have to do is invoking its

public void parse() method. This method will parse the bib file used to instantiate

the Reader object and will store in a couple of Vector objects both the

org.w3c.dom.Document and String representation of each entry. These two data

structures can be later on retrieved invoking the following methods:

� public Vector getDocuments()
� public Vector getDocumentsAsStrings()

8.4.2 Class TrBibReader.Bib2XML

Each Reader instance, leverage on the TrBibReader.Bib2XML class for

accomplishing its task. What this class does is translating a single bib item into

an appropriate XML document. This class’ constructor takes, as input patameter,

a LinkedList instance. Each entry of this list corresponds to a bib tag along with

its value. For example, given the bib entry depicted in figure 8.8, the first element

contained into the list will be: BI B−VERSI ON: : CS−TR−v2. 1

BI B−VERSI ON: : CS−TR−v2. 1
 I D: : ncst r l . caber net / / BOLOGNA#UBLCS−99−10
 ENTRY: : June 10, 1999
ORGANI ZATI ON: : Uni ver si t y of Bol ogna (I t al y) . Depar t ment of Comput er

 Sci ence.

The JXTAnthill Project 115

 TI TLE: : Pr oceedi ngs of t he Wor kshop on Vi r t ual Document s,
 Hyper t ext Funct i onal i t y and t he Web

 AUTHOR: : Mi l osavl j evi c, M.
 CONTACT: : <Mar i a. Mi l osavl j evi c@cmi s. CSI RO. AU>
 AUTHOR: : Vi t al i , F.
 CONTACT: : <f abi o@cs. uni bo. i t >
 AUTHOR: : Wat t er s, C.
 CONTACT: : <wat t er s@cs. dal . ca>
 DATE: : May 1999
 PAGES: : 51
 COPYRI GHT: : Depar t ment of Comput er Sci ence, Uni ver si t y of Bol ogna,

 I t al y. Al l r i ght s r eser ved.
OTHER_ACCESS: : URL: f t p: / / f t p. cs. uni bo. i t / pub/ t echr epor t s/ 99−10. ps. gz

ABSTRACT: :

Col l ect i on of paper s pr esent ed at t he Wor kshop on Vi r t ual Document s,
Hyper t ext Funct i onal i t y and t he Web.

END: : ncst r l . caber net / / BOLOGNA#UBLCS−99−10

Figure 8.8 bib file sample entry

Once the Bib2XML class has been instantiated, invoking the public

org.w3c.dom.Document doFinal() method we obtain the XML representation of

the bib item, shaped as a DOM (Document Object Model). The String

representation of the same XML document, can be obtained through the public

String toString() method.

For example, the XML representation of the bib entry depicted in figure 8.8 is

represented in figure 8.9.

<?xml ver s i on=" 1. 0" encodi ng=" UTF−8" ?>
<Tr Bi b

BI B−VERSI ON=" CS−TR−v2. 1"
I D=" ncst r l . caber net / / BOLOGNA#UBLCS−99−10"
ENTRY=" June 10, 1999
ORGANI ZATI ON: : Uni ver s i t y of Bol ogna (I t al y) . Depar t ment of Comput er

 Sci ence. "
TI TLE=" Pr oceedi ngs of t he Wor kshop on Vi r t ual Document s, Hyper t ext

Funct i onal i t y and t he Web"
DATE=" May 1999"
PAGES=" 51"
COPYRI GHT=" Depar t ment of Comput er Sci ence, Uni ver s i t y of Bol ogna,

 I t al y . Al l r i ght s r eser ved. "
OTHER_ACCESS=" URL: f t p: / / f t p. cs. uni bo. i t / pub/ t echr epor t s/ 99−10. ps. gz"
ABSTRACT=" Col l ect i on of paper s pr esent ed at t he Wor kshop on Vi r t ual

 Document s, Hyper t ext Funct i onal i t y and t he Web. "
END=" ncst r l . caber net / / BOLOGNA#UBLCS−99−10" >
<AUTHOR

NAME=" Mi l osavl j ev i c , M. "
CONTACT=" Mar i a. Mi l osavl j ev i c@cmi s. CSI RO. AU" / >

The JXTAnthill Project 116

<AUTHOR
NAME=" Vi t al i , F. "
CONTACT=" f abi o@cs. uni bo. i t " / >

<AUTHOR
NAME=" Wat t er s, C. "
CONTACT=" wat t er s@cs. dal . ca" / >

</ Tr Bi b>

Figure 8.8 XML representation of the bib entry depicted in figure 8.7

8.4.3 Class TrBibReader.BibFormatException

This class simply defines an exception the TrBibReader.Reader instance will

throw if the provided input file is not compliant with the recognized bib format

version (CS−TR−V2.1 at the moment).

8.5 Resource Sharing Ant Species: Gnutant

At the moment, the technical report sharing application employs a generic virtual

ant for accomplishing its tasks. In the future we have planned to develop a more

sophisticated and specialized ant species that will be able to handle and

understand the content of the XML documents describing the shared resources.

This is needed to increase the number of successful searches. What follows is

the description of the virtual ant species employed at the moment along with the

techrep application: Gnutant.

Gnutant is an artificial ant species devised for building a file−sharing application.

Ants belonging to this ant species are in charge of executing two main tasks:

� Building and maintaining a distributed file index.
� Performing searches in the Anthill network.

Each resource is associated with some meta−data including a set of textual

keywords and a unique file identifier. This file identifier is the same for all the

The JXTAnthill Project 117

potential replicas of the same resource. This approach is needed to provide

faster file downloads, by requesting disjoint fragments of the file from multiple

location (not yet supported by the implementation). The distributed file index is

used by Gnutant ants for routing purposes. This index is made up of entries that

associate a set of next hops in the Anthill network with the hash value of a

keyword. Each hashed keyword is computed using the Secure Hash Algorithm

(SHA) to obtain a 160 bit value. When an ant performing a search reaches a

nest, it will inspect the routing storage using the keywords it is assigned to. If an

exact match is found, the ant will select one of the entries in the set of next−hop

nests associated with the matching hashed keyword; otherwise, it will select a

nest associated with the “closest” hashed keyword. This notion of closeness is

fundamental to Gnutant’s routing scheme. Nests associated with a particular

hashed keyword in a routing storage will tend to receive more requests for

keywords similar to it. Thus they will tend to garner URLs referring to resources

all exposing similar hashed keywords, giving life to a clustering phenomena that

will improve the search performance over time, enabling ants to quickly find the

relevant region in the nest network [BMM−09−01]. The Gnutant ant species

envisages three task−specialized ant types:

� InsertAnt.
� SearchAnt.
� ReplyAnt.

InsertAnt. Ants belonging to this category are in charge of updating the

distributed index upon the insertion of a new resource into an Anthill nest.

SearchAnt. SearchAnts are generated by nests to satisfy users requests for

resources. These ants exploit the routing information to determine the shortest

path to files matching the user requests. SearchAnts are associated with a TTL

(Time−to−Live) value: upon reaching its TTL, the ant will return to its originating

The JXTAnthill Project 118

nest backtracking the followed path and updating the distributed index to reflect

its findings.

ReplyAnt. These ants are generated by SearchAnt instances once a resource

has been found. They are meant to return immediately to their home nest

bringing there the set of useful results. This way the SearchAnt instance may

keep on following new paths looking for more resources.

8.6 Gnutant Ant Species: Simulation Results

The Gnutant ant species has been tested using the Anthill simulation

environment for comparing its real behavior to our expectations. The simulated

scenario consisted of a 2000−nodes static network. These preliminary tests

didn’t take into account node crashes, but tests in a dynamic scenario have

already been planned. The Gnutella network has been monitored over a period

of 30 minutes for collecting a set of 10000 real queries. These queries have

been used for randomly scatter resources into our simulated Anthill network,

before running the simulation. This way, potentially all of the queries could have

been satisfied. Each routing storage has been initialized with randomly

generated SHA keys, thus making ants move at random in the beginning. Ants

have been assigned to a Time−To−Live (TTL) value equal to 100 hops and, after

the insertion phase, the simulation has been run ten times issuing 20000 search

requests per session. Routing, resource and URL storage have been set with a

capacity of 16, 16, and 64 respectively. Upon receiving a successful response,

has been simulated the download of 10% of the matching files, followed by the

execution of an InsertAnt for each downloaded file. This task is necessary for

keeping the distributed index as much updated as possible.

The JXTAnthill Project 119

Figure 8.9 Gnutant Simulation Results: successful searches increase as number of searches grows up [BMM−09−01].

Figure 8.10 Gnutant Simulation Results: number of hops decreases as the number of searches grows up [BMM−09−01].

As we can see in figure 8.9, the number of successful searches increases as the

number of searches grows up, while the number of required hops in the Anthill

network goes down (figure 8.10). The system seems to converge towards a 65%

success rate for searches and approximately six hops for the average search

depth. These data confirm our expectations: the overall performance of the

system increases with the growth of interaction among the system’s

components, the nodes.

The JXTAnthill Project 120

Appendix − UML Sequence Diagrams

The JXTAnthill Project 121

Bibliography

[BMM−09−01] Özalp Babaoglu, Hein Meling, Alberto Montresor. Anthill: A
Framework for the Development of Agent−Based Peer−to−Peer Systems. (2001)

[PJVN] Bernard Traversat, Mohamed Abdelaziz, Mike Duigou, Jean−Christophe
Hugly, Eric Pouyoul and Bill Yeager. Project JXTA Virtual Network.
http://www.jxta.org (February 5, 2001)

[SPJ] Sun Microsystems, Inc. Security and Project JXTA. http://www.jxta.org
(January 23, 2002)

[POBLANO] Rita Chen and William Yeager, Sun Microsystems, Inc. Poblano A
Distributed Trust Model for Peer−to−Peer Networks. http://www.jxta.org (2002)

[PJTO] Li Gong, Sun Microsystems, Inc. Project JXTA: A Technology Overview.
http://www.jxta.org (April 25, 2001)

[PJOIC] Sun Microsystems, Inc. Project JXTA: An Open, Innovative
Collaboration. http://www.jxta.org (April 25, 2001)

[PJJFPG] Sun Microsystems, Inc. Project JXTA: Java Programmer’s Guide.
http://www.jxta.org (December 7, 2001)

[SOSI] Eric Bonabeau, Guy Theraulaz, Jean−Louis Deneubourg, Serge Aron,
Scott Camazine. Self−Organization in Social Insects. Santa Fe Institute.
(February 20, 2002)

[POKA] Eric Bonabeau, Guy Theraulaz, Vincent Fourcassié, Jean−Louis
Deneubourg. The phase−ordering kinetics of cemetery organization in ants.
Santa Fe Institute. (February 20, 2002)

[P2PAM] Alberto Montresor. The Anthill Project − Part 1: Introduction to Peer−
to−Peer. http://www.cs.unibo.it/montreso (2001)

[GC] GartnerConsulting, GartnerGroup. The Emergence of Distributed Content
Management and Peer−to−Peer Content Networks. (January 2001)

[SATH] Eric Korpea, Dan Werthimer, David Anderson, Jeff Cobb and Matt
Lebofsky. SETI@home: Massively Distributed Computing for SETI.

The JXTAnthill Project 122

[WIAWIN] Clay Shirky. What is P2P... And What Isn’t?
http://www.oreillynet.com/pub/a/p2p/2000/11/24/shirky1−whatisp2p.html
(February 2002)

[P2P4A] Andy Oram. Peer−to−Peer for Academia.
http://www.oreillynet.com/pub/a/p2p/2001/10/29/oram_speech.html (February
2002)

[DST] Nelson Minar. Distributed Systems Topologies: Part 1−2.
http://www.oreillynet.com/pub/a/p2p/2001/12/14/topologies_one.html
http://www.oreillynet.com/pub/a/p2p/2001/12/14/topologies_two.html (December
12, 2001)

[TCBON] Gary William Flake. The Computational Beauty of Nature, Computer
Exploration of Fractals, Chaos, Complex Systems, and Adaption. A Bradford
Book, The MIT Press. (1999)

[CNET−01] Larry Peterson and Bruce S. Davie. Computer Networks, Second
Edition. Edited by Morgan Kaufman. (2000)

[DS] Distributed Systems, Second Edition. Edited by Sape Mullender. Addison−
Wesley. (1998)

[CMS] Content Management Service. http://www.jxta.org (May 6, 2002)

